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Chapter 1 

Introduction and Overview 

This final technical report contains a summary of the activities supported under the Air Force 
AFOSR URI Grant F49620-93-1-0280 during the four year period 1 May 1993 through 30 April 
1997. This project is concerned with an interdisciplinary research program for the modeling, design, 
analysis, control and testing of new approaches to distributed parameter systems. The principal 
investigator is Dr. John A. Burns, Hatcher Professor of Mathematics at Virginia Tech. 

1.1    Introduction 

The Air Force Center for Optimal Design and Control (CODAC) was established in May 1993 
under the Air Force AFOSR URI Grant F49620-93-1-0280. CODAC is an interdisciplinary research 
center with core academic participants at Virginia Tech and North Carolina State University. The 
Center is built on a highly integrated interdisciplinary program with four major components: 

• Long Term Multi-disciplinary Research 

Activities of CODAC are organized around specific research topics. Each topic focuses on 
a particular Air Force or industrial problem area and includes joint research efforts involving 
the two universities, the appropriate Air Force Laboratory, and industry. This research has 
theoretical, computational, and experimental components. 

• Experimental Testing and Validation 

The direction of the research programs is formed in part by experimental results. Moreover, we 
use both numerical experiments and laboratory experiments to test and validate the theoretical 
research. Laboratory experiments and testing and development of software take place at 
Virginia Tech, at Air Force Laboratories and, when appropriate, at an industrial site. 

• Air Force Laboratory Interaction and Industrial Links 

There is a constant interaction between scientists and engineers at Air Force facilities, Virginia 
Tech, and the North Carolina Sate University We have several ongoing projects involving core 
participants and Air Force scientists. We have expanded the current efforts to actively pursue 
new laboratory interactions, and to use these ties to facilitate the transition of basic research 
results to the Air Force. In addition, we have initiated several new projects with both large 
and small companies in order to facilitate the transition of research into dual usage. 

• Interdisciplinary Educational Program 

The Center offers an unparalleled potential for strengthening the educational and scientific 
infrastructure by training students and post-doctoral researchers in an interdisciplinary team 
approach to scientific and engineering research.   The Center provides unique opportunities 



for theoretical, computational, and experimental research. Through the interactions with 
Air Force laboratories and industrial partners, students are exposed to real problems. The 
combined theoretical, computational, and experimental approach provides a meaningful inter- 
disciplinary research experience. 

1.2    Center Organization and Facilities 

Dr. John A. Burns is the Director of CODAC and is responsible for the day-to-day operation of 
the Center and for implementing and coordinating the research, laboratory/industry interactions, 
and educational programs. Dr. Eugene M. Cliff is the Director for Engineering. The CODAC is 
located within the Interdisciplinary Center for Applied Mathematics (ICAM) at Virginia Tech. Dr. 
Terry Herdman is the Director of ICAM. The Executive Advisory Committee consists of the Center 
Director, the Director for Engineering and the Director of the Interdisciplinary Center for Applied 
Mathematics. The Executive Committee is responsible for program planning and for advising the 
Director on the allocation of resources and on ways to make CODAC more effective as an Air Force 
resource. The research conducted at CODAC requires computational, as well as more traditional 
laboratory facilities. Although much of the large scale computing is done on supercomputers at Air 
Force facilities, pre-processing and post-processing must be done locally. 

ICAM Computing Facilities 
ICAM houses a heterogeneous Unix system with file-sharing under a Network File System (NFS). 
The Unix system currently consists of the following platforms: 

• Our main file server (sun.icam.vt.edu) is four processor SUN-1000, with 128MB internal 
memory, 1GB internal hard-drive, an external SCSI hard-drive system with 27GB of available 
storage. 

• Our graphics workstations include a Silicon Graphics IRIS 4D/310 graphics workstation 
(sgi.icam.vt.edu). This features an R4000 processor, 64MB of memory and supports a 
650MB read-write optical disk drive. A second 'public' SGI-Indigo2 features an R8000 pro- 
cessor, 128MB of memory and Extreme graphics (sgi2.icam.vt.edu). Similar machines 
(sgi3.icam.vt.edu) are reserved for use by the Post-Doctoral researchers and by Dr. Burns 
(burns.icam.vt.edu). 

• Our main compute engines are two DEC Alpha 3000/600 computers with 256MB of memory 
(alphal.icam.vt.edu and alpha2.icam.vt.edu). A third DEC AlphaServer 2100 is a dual- 
processor machine with 512MB of memory (alpha3. icam. vt. edu). 

• In addition to the dedicated monitor/keyboard for each platform the computers can be accessed 
from the Ethernet. The Center currently has (10) Pentium-based personal computers (two in 
faculty offices and eight for public use) and (7) Power-Macintosh machines (one in a faculty 
office). One of these PowerMacs is principally dedicated to producing high-quality video 
graphics. 

• Standard print output is directed to an HP LaserJet 5SiMX printer while color output can be 
produced on any of three HP DeskJet 1600CM printers. 

• The system is connected via a (lObaseT) Ethernet (10Mb/s). 

ESM Mechanical Systems Laboratory - MSL 
Experiments on integrated actuator/sensor/materials are carried out in the Mechanical Systems 
Laboratory (MSL) of the Engineering Science and Mechanics Department. This laboratory consists 
of 2 laboratories with more than 1500 square feet of floor space. The laboratory contains a variety 



of actuators, sensors and piezoelectric devices. To previde control signals to the various actuators, 
the laboratory has an EAI 2000 analog computer, capable of handling up to 60 state variables, plus 
several smaller analog computers. Digital control is accomplished by a 16 channel Systolic Systems' 
Optima 3, capable of real time digital control. Motion sensing is accomplished by a variety of 
encoders, tachometers, 20 Kistler Instrument Piezobeam accelerometers, rotational accelerometers, 
strain gauges, a laser vibrometer (DISA), proximity probes, and piezoelectric films. These items 
are complete with the required electronics and data acquisition systems. There are a variety of 
piezoelectric devices - both films and ceramics, 6 self-sensing actuator circuits with layered PZTs 
and an embedded self-sensing actuator beam system. 

ME Adaptive Structures Laboratory - ASL 
The experiments on structural/fluid control are carried out in the Adaptive Structures Laboratory 
of the Mechanical Engineering Department. Currently, the facilities of the (ASL) consist of several 
vibration measurement systems, smart structures test beds (beams, plates, and cylinders), and a 
variety of digital control systems. Modal sensors and piezoelectric actuators are fabricated and at- 
tached to structures routinely. The laboratory has the complete capability to perform structural dy- 
namic testing, including amplifiers, accelerometers, distributed piezoelectric sensors, non-contacting 
transducers, force transducers, and shakers, together with amplifiers and signal conditioning. A 
Tektronix 4-channel expandable frequency analyzer with integrated software facilitates frequency 
analysis of electromechanical systems. Together with a complete machine shop and electrical shop 
located within the department, fabrication of supports and testing of structures is readily performed. 
The laboratory has access to a scanning laser velocimeter manufactured by Ometron. This scanning 
laser has made dynamic verification of distributed models of structures actuated by smart materials 
possible to an extent previously not possible. The scanning laser vibrometer allows extremely high 
density velocity measurements of distributed structures (the density of points is much higher than 
the mesh found in finite element models). The use of this laser measurement system has been made 
easy by the in-house development and implementation of instrument software implemented on a 
Macintosh platform. Control of structures is enabled with the following instruments and capability. 
Digital control is provided by a Spectrum 32 input/16 output channel floating point digital signal 
processor system. Analog control is provided by a 10-channel Comdyna analog computer, and access 
to a 64-channel EAI 2000 analog computer is also available. Furthermore, small controllers and sig- 
nal conditioning units are developed in the laboratory using a breadboard development system. This 
has allowed additional channels of control to be custom designed and built very cheaply. The labora- 
tory includes a variety of PC's and is currently being upgraded with workstations (IBM Rise 6000's) 
which will run the software currently being run on a VAX-cluster. This software includes modal 
analysis software (SMS,LMTS,I-DEAS), finite element software (ANSYS.I- DEAS,NASTRAN), and 
acoustic analysis software (SYSNOISE). 



Chapter 2 

Objectives 

The goal of CODAC is to become a resource enabling the realization of the tremendous oppor- 
tunities that new approaches to interdisciplinary research offer as they are bought to bear on the 
problems that face the Air Force. Problems of optimal design and control of complex flows, fluid- 
structure interactions, distributed sensor and actuators, and smart structures are approached by 
multi-disciplinary research teams (theoretical, computational and experimental). In addition, this 
research effort is part of a laboratory/academic/industrial program that ensures the transition of 
the fruits of the research. 

2.1 Research Objectives 

The Center and its research programs have the following five long term scientific objectives: 

• To apply new techniques in modeling, control, and optimal design to the nonlinear interac- 
tions between aerodynamic loading and structural deformations, focusing on reduced order 
modeling, novel approaches to computing sensitivities, adjoint methods, shape optimization, 
and acceleration algorithms that take advantage of parallel architectures. 

• To develop new adaptive distributed sensors and actuators for controlling structural compo- 
nents in a manner which will control the surrounding fluid medium. This effort focuses on the 
use of segmented smart materials in sensor/actuator design. 

• To demonstrate the use of active control in turbulent flows. The fundamental components of 
this interdisciplinary effort include low order mathematical modeling, and nonlinear adaptive 
control. 

• To provide a scientific investigation into modeling and control of dynamically adaptive, multi- 
functional smart structural systems for use in the control of nonlinear fluid/structure interac- 
tions. This research combines applied mathematics, modeling, control, structural dynamics, 
computations, and experimental techniques and focuses on smart/self-sensing actuators. 

• To develop local and global approaches to non-linear feedback control that incorporate new 
breakthroughs in nonlinear observers and that are applicable to reduced order models of com- 
plex flow and fluid/structure control problems. These new approaches will be tested in flow 
control and structural control experiments. 

2.2 Educational Objectives and Interactions 

In addition to the research program, CODAC has expanded the interactions between academic re- 
searchers, Air Force laboratories and industry. Moreover, we have developed an educational program 



to train applied mathematicians, engineers, and scientists to work on interdisciplinary problems. In 
this regard, we have the following objectives: 

• To develop an active program directed at educating interdisciplinary scientists and encouraging 
these graduates to work at Air Force facilities and laboratories. Special efforts are being made 
to recruit women and minority students into the educational programs. 

• To develop an organizational framework designed to promote the transition of basic research 
to Air Force laboratories and industry. This framework includes a program of regular short- 
term visits to Air Force laboratories and industries by academic researchers, post-doctoral 
associates, and graduate students and workshops devoted entirely to joint research. 



Chapter 3 

Status and Highlights 

During the past four years CODAC has been extremely active in all aspects of its mission. This final 
report contains a summary of several ongoing research projects (Chapter 4) and the laboratory and 
industrial interactions (Chapter 7). In addition, we provide a list of visitors and a list of faculty and 
students supported by CODAC during this period. The following items are particularly noteworthy. 

3.1 Status of Effort 

During this four year period, CODAC researchers have been extremely productive in terms of 
scientific papers, presentations at conferences and students. In particular, during the period from 1 
May 1993 to 30 April 1997 CODAC researchers have : 

• produced more than 125 scientific papers, 

• made more than 150 presentations at conferences and colloquium, 

• produced 17 Ph.D. students, 

• produced 6 M.S. students, 

• provided partial support for more than 35 graduate students. 

During the past four years this research effort has produced several new mathematical algorithms 
for optimal design and control of fluid flow systems and fluid/structure interactions. The effort 
was divided into two basic tasks: Optimal Design and Feedback Control. This effort has 
produced revolutionary new methodologies in both areas. In particular, a hybrid sensitivity equation 
method for optimal design was developed, refined and applied to a wide variety of flow optimization 
problems. This method has been transitioned into several commercial software packages and is now 
the basis for many continuing university-industry projects. In the area of feedback control, large 
scale computational mathematics and reduced basis methods were combined to produce a solid 
mathematical framework for constructing low order dynamic controllers for non-linear fluid/structure 
interactions. These ideas also produced a new methodology for attacking the fundamental problem 
of optimal sensor-actuator location for distributed parameter feedback control. 

3.2 Highlights of the Research Activities 

During the period 1 May 1993 to 30 April 1997 the DOD URI Center For Optimal Design And 
Control (CODAC) at Virginia Tech made significant and fundamental advances in the development 
and application of completely new approaches to optimal design and control of distributed parameter 



aerospace systems. The following projects provide a sample of the breath of the research and were 
particularly noteworthy: 

CONTROL OF FLUIDS AND STRUCTURES 

• Computational Approach to Sensor/Actuator Location for Feedback Control of 
Fluid Flow Systems 

The problem of selecting and placing sensor/actuator pairs for optimal performance and ro- 
bustness of feedback controllers is extremely complex so that designers often resort to trial 
and error methods. This process can be costly and increases the design cycle time. A funda- 
mental issue in applications may be stated as the following three part question: Given that 
one desires to implement the most robust feedback control law, (i) what needs to be sensed, 
(ii) what types of sensors and actuators should be used, and (iii) where should these devices 
be located in order to maximize control effectiveness? 

Professor John Burns at Virginia Tech and Professor Belinda King at Oregon State have 
developed an entirely new approach to the problem of optimal sensor placement for controlling 
systems governed by hyperbolic and parabolic partial differential equations. These models have 
applications to control of fluid flows, control of structure/fluid interactions, flutter suppression 
and control of thermal processes. Burns and King have constructed a mathematical framework 
to address problems of this nature and used this framework to solve the problem of optimal 
sensor placement for various nonlinear control problems involving fluid dynamics and hybrid 
structural systems. Distributed parameter theory is used to determine the important physical 
quantities to be sensed and thus to provide insight into the types of sensors needed. The 
innovation was to assume a general form of the actuator, obtain an integral representation of 
the corresponding robust control law and then use rigorous approximation theory to compute 
finite dimensional sub-optimal controllers. These sub-optimal controllers are then used to 
attack the problem of optimal sensor placement. One of the main breakthroughs was the 
development of a new mathematical theory that provided explicit integral representations 
needed in the implementation of this approach. This research provides a key step toward 
the development of a rigorous and rational methodology for attacking the problems of sensor 
selection and placement in the design of aerospace control systems. 

• Reduced Basis Approach to Design of Low Order Feedback Controllers 

The development of practical feedback controllers for nonlinear partial differential equations is 
one of the most basic problems that must be faced before one can address active control prob- 
lems for fluid flows and nonlinear structures. One of the main difficulties is the construction 
of the low-order nonlinear observer needed to estimate those states that can not be sensed. In 
fluid flows the Navier Stokes equations serve as the fundamental model. It is common practice 
to first discretize the distributed parameter model and then to use the corresponding lumped 
parameter model in the controller design. Although this approximate-then-design method 
can work for simple problems, when applied to complex flow control and nonlinear vibration 
problems it produces large- order, and hence, non-practical observers. It is also well known 
that this approach can lead to erroneous results and one must exercise care to ensure that the 
resulting design is robust. 

Professor John Burns of Virginia Tech, along with several other AFOSR-supported researchers 
such as Gal Berkooz (Beam Engineering) and Belinda King (Oregon State) have achieved 
major advances in the development of an approach to overcome these difficulties and applied 
this method to structural vibration problems. By introducing numerical approximations at 
the last stage of the design, they were able to increase robustness, enhance performance and 
achieve a practical design. The new method proceeds in steps. First, distributed parameter 
control theory is used to compute robust control laws for a linearized model. The spatial 
behavior of these laws is analyzed to determine those regions in space where the state of the 
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dynamical system is most needed in the implementation of the feedback control law. Local 
low dimensional dynamical systems are then constructed by either certain projection schemes 
or reduced- basis finite element techniques. The resulting nonlinear system is then used as an 
observer for the nonlinear system to be controlled. This method has been applied to several 
nonlinear systems. In a recent application to vibration suppression, this reduced basis approach 
not only produced a low-dimensional controller, the controller was shown to be more robust 
than the full-order controller. This new design methodology generates very simple control laws 
that, combined with low order nonlinear observers, have proven to be quite effective. 

• Global Solvability for Damped Nonlinear Hyperbolic Systems 

The development of practical feedback controllers for nonlinear partial differential equations 
is one of the most basic problems that must be faced before one can address active control 
problems for smart materials and nonlinear structures. One of the main difficulties is the 
construction of the practical computational schemes that are appropriate for control design 
and optimization. For new rubber-based materials, the constitutive relationships are highly 
nonlinear in both material and geometry. Standard mathematical theories do not cover such 
cases and there is a need to develop the basic existence and well-posedness of mathematical 
models. This foundation is used in the development of rigorous approximation algorithms. H. 
T. Banks and co-workers have established the well-posedness of these systems and used these 
results to obtain the regularity needed to establish convergence of Galerkin approximations. 
This effort provides the foundation that was needed to build a framework for attacking the 
complex distributed parameter control problems in smart structures. 

• An Experimentally Validated Damage Detection Theory in Smart Structures 

A method for non-destructive detection and location of damage using parameterized partial 
differential equations and Galerkin approximation techniques is presented. Damages in a struc- 
ture cause changes in the physical coefficients of mass density, elastic modulus and damping 
coefficients. This section examines the use of beam like structures with piezoceramic sensors 
and actuators to perform identification of those physical parameters, and hence to detect the 
damage. The method casts the inverse problem as an optimization problem. The iterative 
method is based on enhanced least-square error minimization. Experimental results are pre- 
sented from tests on cantilevered aluminum beams damaged at different locations and with 
damage of different dimensions. It is demonstrated that the method can sense the presence of 
damage, and locate and characterize the damage to a satisfactory precision. 

• Feedback Control of a 2D Thermal Fluid 

This accomplishment illustrates the application of modern distrubuted parameter control to 
the development of practical controllers for Navier-Stokes flows. Dr. D. Rubio developed both 
linear and non-linear feedback control laws for boundary control of a heated fluid in a thermal 
convection loop. These laws were tested on models of the flow ranging from a simple one 
mode model to a high fidelity finite element model. The method made use of optimal feedback 
theory for partial differential equations and combined computational mathematics with careful 
modeling to produce effective control laws. This effort is the first to show that distributed 
parameter control can produce simple practical feedback laws for complex non-linear flows. In 
addition, it was shown that making use of the PDE to guide controller design yields valuable 
information concerning the importance of the non-linearity in design. In particular, if one 
can accurately resolve the flow, then non-linearities can be used to assist in the controller 
design. This work is being extended to more complex fluid flow problems and is providing the 
foundations for a better understanding of the role that non-linearity plays in flow control. 

11 



OPTIMAL DESIGN 

• Optimal Design of a Forebody Simulator 

The aerodynamic performance of an aerospace system or its components can often be enhanced 
by careful tailoring of shapes and fairings. Computational tools to aid in the design of these 
objects can enhance performance and reduce development costs. Such tools combine com- 
putational fluid dynamics (CFD) and optimization methods. Efficient optimization schemes 
require information about both the flow and also its sensitivity to design changes. Moreover, 
standard finite-difference approximations are far too costly in computational resources. As 
an alternative, we use the basic continuum model to derive sensitivity equations (SE) - linear 
partial differential equations describing the flow sensitivity - which are then solved in discrete 
approximation. 

We have applied this method to several problems. These problems were motivated by the 
design of the Free-Jet Test Facility at the Arnold Engineering Development Center. The 
combined flow/sensitivity code is a modification of the PARC analysis code used at AEDC. 
This was run on the C-90 at USAE Waterways Experiment Station, Vicksburg MS. A 2D 
problem was used to test the method. We used a Quasi-Newton/Trust Region algorithm and 
gradient information from the SE method. Timing test show that for a problem of modest 
size the SE method produces 50% savings in computer time. More importantly, the method 
lends itself to parallel implementation and for large problems the savings could be 90%. This 
approach is now the basis for several joint ventures with Air Force Laboratories and industrial 
partners. In particular, we are in the process of transitioning this into software products. 

• Asymptotically Consistent Gradients in Optimal Design 

This accomplishment is based on a research effort that started with a project to develop a new 
computational algorithm for aerodynamic design. Researchers at CODAC have developed 
what is now known as the Sensitivity Equation Method (SEM) for optimal design. The fun- 
damental idea is to use the partial differential equations that describe the flow sensitivities (to 
given parameters) as a basis for the development of approximate gradients in the optimization 
loop. However, there were several theoretical and practical issues that needed to be addressed 
before this method could be placed on a sound theoretical footing. Dr. Jeff Borggaard, working 
with other researchers at CODAC, obtained the first theoretical convergence results for this 
method. In addition, these results are now being transitioned into major CFD codes around 
the world. 

• Reduced-Hessian Methods for Optimal Design 

Optimal design problems incorporating compressible flow models present some interesting 
challenges for optimization algorithms. Since the velocity-field can be discontinuous, it happens 
that the flow solution can be a non-smooth function of design parameters. To overcome this 
difficulty we employ a shock-fitting formulation so that the shock location is explicit. We 
formulate the design-optimization problem in a modern SQP-setting (Sequential-Quadratic 
Programming). This means that the flow variables, the geometric design variables and the 
shock location are all treated as independent variables and that the Euler flow equations 
(including explicit shock-jump conditions) are imposed as constraints. The natural problem 
structure is exploited in the null-space representation of the linearized constraint operator. This 
leads to a separation of the variables into primary and secondary categories; the linearized 
constraints can be uniquely solved for the secondary variables given values of the primary 
variables. Following this idea we construct a reduced Hessian involving the primary variables 
only. Numerical results have shown considerable efficiencies. While there is a modest cost in 
linear algebra, we obtain optimized designs with a 90% reduction in Euler flux evaluations. 

• Airfoil Design by an All-At-Once Method 
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Abstractly, the optimum airfoil design problem can be formulated as a constrained optimization 
problem and many techniques have been applied to its solution. Most of the recent approaches 
combine optimization techniques with computational fluid dynamics. In many treatments the 
flow variables q are viewed as functions of the design parameters w. This function q(w) is 
implicitly defined by the governing flow equations (R(q,w) =0). In the present case of steady, 
compressible these are the 2-D Euler equations of fluid dynamics. This is the view in the 
so-called black-box approach. The Euler equations are, in a sense, hidden from the optimizer 
by eliminating the flow variables. 

The all-at-once formulation provides an alternative approach in which one views the flow 
variables q and the design variables w as independent variables in the optimization problem. 
The Euler equations, which couple these together, are included in the optimization problem as 
a constraint, possibly along with other constraints. The optimizer now iteratively computes a 
sequence of points that move toward optimality and feasibility at the same time (i.e. all-at- 
once). 

Professors Heinkenschloss and Cliff along with A. Shenoy (a recent Ph.D. student) have de- 
veloped a formulation and related software for this class of problems. The software combines 
an existing research code for 2-D compressible flows with Heinkenschloss' trust-region opti- 
mization algorithm TRICE. The optimization algorithm requires that the flow code produce 
an increment in the flow variables (6q) corresponding to a step in the design variables (6w) so 
that the pair will satisfy a linearized version of the Euler equation. A related adjoint system 
must also be solved. The TRICE algorithm finds search directions to improve feasiblity and 
optimality. Trust-region ideas are used to adaptively compute a trust-region-radius and this 
provides a framework for establishing global convergence of the algorithms. The combined al- 
gorithm is quite efficient and leads to an optimized airfoil for approximately the computational 
effort required for five - six nonlinear flow solutions. 

• Optimal Shape Design in Forced Convection Using Adaptive Finite Elements 

A common strategy in developing a method to solve these optimal design problems is to cas- 
cade an existing numerical scheme for the PDEs into a gradient-based optimization algorithm. 
This so-called black-box strategy allows one to retain trusted numerical software, while us- 
ing a gradient-based optimization algorithm helps reduce the number of objective function 
evaluations. These evaluations require the solution of the PDEs and are typically expensive. 
We have considered a forced convection design problem which involves the two-dimensional 
steady Navier-Stokes and energy equations. An adaptive finite element solver was used for the 
approximation of these equations. Adaptive remeshing strategies are natural in the context of 
optimal design as the mesh used for the initial design is unlikely to be appropriate as the de- 
sign changes. This methodology allows for constructing optimal design methods which require 
minimal intervention at the intermediate designs. 

3.3    Highlights of Laboratory and Industrial Interactions 

In addition to the development of a strong basic research program, CODAC developed and ex- 
panded its interactions with Air Force Laboratories and worked to transition the new methods into 
industry. A complete description of these projects may be found in Chapter 7. The following list 
indicates the breadth of this effort for the past four years. 

3.3.1    Air Force Laboratories 

• Arnold Engineering and Development Center Tullahoma, TN 
J. Benek, M. Briski, P. Hoffman, S. Keeling, K. Kneile, S. Tennent and D. Todd 
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• Phillips Laboratory Albuquerque, NM 
A. Das, J. Mason, D. Sciulli and A. Weston 

• Wright Laboratory Wright Patterson PAFB, OH 
S. Banda and J. Malas 

3.3.2    Industrial Partners 

• AeroSoft Inc. Blacksburg, VA 
A. Godfrey and R. Walters 

• Analytical Mechanics Associates Hampton, VA 
R. Kumar and H. Seywald 

• Aurora Flight Sciences Inc. Manasas, VA 
M. Hutchinson 

• BEAM Engineering and Applied Research Ithaca, NY 
G. Berkooz and Richard Newsome 

• Sverdrup Tullahoma, TN 
J. Benek, P. Hoffman and S. Keeling 

• Tektronix Graphics, Printing and Imaging Division Wilsonville, OR 
S. Berger, R. Burr and P. Gilmore 

3.4    Other Activities 

• Interactions and Educational Program 

During this four year period, CODAC researchers have given more than 150 lectures at 
national and international conferences. Over 35 graduate students have worked on CODAC 
projects under AFOSR funding. Many of these students have visited Air Force laboratories 
and industrial sites. In addition, CODAC was asked to make a presentation on how AFOSR 
funded research supports the national defense. This presentation took place on May 9, 1996 
in Washington, DC and was sponsored by the Association of American Universities. 

• Visitors Program 

During this period more than 160 visitors, representing 13 different countries, have visited 
CODAC. A partial list of visitors is given in Chapter 10. 

• Students and Post-Doctoral Researchers 

During this period CODAC provided partial support for 4 undergraduate, more than 35 grad- 
uate students and 5 post-doctoral scientists. Chapter 5 contains the list of people supported 
under this contract. 

• Workshop on Optimal Design and Control 

In April 1993 we organized a workshop on optimal design and control. The workshop was 
attended by more than 90 scientists from four countries and included more than 20 attendees 
from government laboratories. The proceedings of the workshop were published as Optimal 
Design and Control in the Birkhäuser series Progress in Systems and Control Theory. 
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Chapter 4 

Accomplishments and New 
Findings 

This chapter contains a detailed summary of the research highlights discussed in Chapter 3. These 
projects were selected because they are indicative of the innovative new ideas produced under this 
grant and they illustrate the breadth of the accomplishments. Since this final technical report covers 
a four year period, we present summaries of projects from each of the three previous years and three 
new projects for the fourth and final year. 

Control of Fluids and Structures 

The five projects described below provide samples of the research conducted in the areas of 
feedback control and sensor /actuator location for distrubuted parameter control systems. 
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4.1    Computational Approach to Sensor/Actuator Location 
for Feedback Control of Fluid Flow Systems 

In this section, we discuss a computational approach to sensor /estimator design for feedback control 
of fluid dynamic systems. This approach is based on combining minmax compensator design with 
piecewise constant approximations of "optimal feedback gains". A driven cavity flow control problem 
is presented to illustrate the idea and to demonstrate the feasibility of this approach, which leads 
to design of low order practical controllers for the Navier-Stokes equations. A finite difference 
Galerkin scheme with divergence free basis is applied to the infinite dimensional system to illustrate 
the feasibility of this approach. Active flow control, specifically, control of fluids based on the 
Navier-Stokes equations is an important area which has received much attention in recent years. 
Research has been devoted to all aspects of this problem, including theoretical, computational and 
experimental. Of considerable importance is the development of practical, low order controllers. We 
consider a specific approach based on combining linear state feedback with non-linear (low order) 
observers. Consequently, questions about types and locations of sensors arise. 

To answer these questions in the context of the driven cavity flow problem, we make use of the 
functional gains arising from minmax design. The gains motivate not only what type of sensors are 
useful, but also the "best" place to locate these sensors to gain the most information. To show the 
viability of the scheme, we implement it computationally. 

4.1.1    Problem Formulation 

The driven cavity flow problem is posed as follows. Let Ü denote an open bounded set in R2 with 
boundary T. In this summary, we shall assume that the cavity is the square as shown in Figure 4.1. 
On the interior, the fluid flow is governed by the Navier-Stokes equations 

du 
at + (u • V)u = -Vp + i/V2u       inOx [0, T]; 

Vu = 0   inftx[0,T], 
(4.1) 

where u = (u, v) represents the velocity of the fluid in the x and y directions, respectively, and p 
denotes the pressure. Also, u is the kinematic viscosity of the fluid. The boundary conditions are 
given on the side walls by 

ulri = u\r3 = v\Fl = v\r3 = 0. 

We assume that the top boundary, r2, is moved horizontally by an "unknown disturbance". That 
is, 

u\r2=v(t),    v|r2 ='0. 

Control is applied on the bottom boundary, r4, leading to the boundary conditions 

«Ir4 = 9(t),    v\r4 = 0. 

The goal is to design a feedback control (using state estimation) to attenuate the disturbance 
t](t). Measurements are provided by four wall shearing stress sensors placed on the vertical walls as 
shown in Figure 4.1. Thus, we have four outputs 

C(*) = 

Ci(0 
C2(0 

C3(*) 

L  <4« 

■■ pu 

dv, 
g-x(t,o,yi) 

dv, 
g~x(t,0,y2) 

dv, 
^(t,i,y3) 

dv,   , 
^(M,y4) 

16 



u=l\(t),   v=0 

y2\ 

u=v=0 
n 

u(0,x,y)=0 

fy4 

u=v=0 

ly3 

yii 

u=g(t),   v=0 

Figure 4.1: The driven cavity with a moving bottom wall. 

where 3/1,3/2 are the sensor locations on Tx and y3,y4 are the locations on T3. The placement 
of sensors need not be symmetric. We use a minmax design and low order finite dimensional 
approximations to construct a dynamic compensator for the full nonlinear Navier-Stokes system. 

4.1.2    The Minmax Compensator 

One can formulate the above system as an abstract distributed parameter model of the form 

du(t) 
dt 

with measured output 

Au(t) + N(u(t)) + Bg(t) + DV(t),    u(0) = u0, 

C(t) = Cu(t) + Er,(t), 

(4.2) 

(4.3) 

in the state space of divergence free vector fields. We assume the linearized control system has the 
form 

dz 
at : Az(t) + Bg{t) + Dri(t),    2(0) = z0 

with measured output 

(4.4) 

(4.5) at) = Cz(t) + Er,(t). 
The idea is to design a nonlinear compensator of the form 

d\ir 
— = Acuc(t) + Nc(uc(t)) + FeC(t) 

g(t) = -Kcvic(t), 

and then construct low order approximations to uc(t). The simplest idea is to set Nc(u) = N(u) 
and use a linear design method to compute Ac, Fc and Kc. Here, we use a "minmax control" design 
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for infinite dimensional systems. The idea is to first solve the Riccati equations 

ATP + PA-P[BR-lBT -e2M]P + Q = 0 (4.6) 

AU + nAT-n[CTN-1C-d2Q]U + M^0. (4.7) 

Assuming (for small 6) that (4.6) has a minimal solution Pe > 0, (4.7) has a minimal solution 
Ue > 0 and 

[n^-e2pe] >0, 
one defines 

' Ke = R~lB*Pe, 

<   Fe = [l- e2PeIle]_1 UeC*N-\ 

Ae = A- BKe - F0C + e2MHe. 

The corresponding "minmax control" can be written 

9oPt(t) = -BTPguc(t) = -Keuc{t). 

The nonlinear closed loop system formed by the above design can be written as 

dt 
u(t) 
uc(t) 

A 
FgC 

-BKe 

Ae 

u(t) 
Uc(t) 

+ N(u(t)) 
N(uc(t)) + D 

FeE V(t). (4.8) 

4.1.3    Numerical Results and Discussions 

Using a finite difference-Galerkin scheme, we discretized the variational form of the system to obtain 
a sequence of finite dimensional systems suitable for computation. This approach is a discrete analog 
of the Galerkin technique used in finite element methods. 

There are two controller "gains" for this model corresponding to horizontal and vertical velocities. 
Thus, we assume that the feedback control for the system can be represented by the integrals 

g(t)=-     Ku(x,y)uc(t,x,y)dxdy-     Kv(x,y)vc(t,x,y)dxdy, (4.9) 

where Ku(x,y) and Kv(x,y) are the so-called "functional gains" anduc(t) = (uc,vc) is the estimate 
of the state. 

The parameters chosen for the computations are Re = 100 and 9 = 0.001. Figure 4.2 shows the 
computed feedback gains Ku(x,y) and Kv(x,y) with variation of the grid size. The computational 
results demonstrate the "convergence" of both components of the feedback gain functions as the 
mesh size decreases. 

Notice that in certain region of the domain the gains are negligibly small. Thus, we can ap- 
proximate the control law (4.9) by taking an M-th order projection of the gains onto characteristic 
functions and making use of the fact that the functions are nearly zero except in small regions near 
the boundary. In particular, let 

M 

Ku(x,y) « K™{x,y) = £ (Ku)% Xij(x,y), 

and 
M 

Kv(x,y) « tf„M(x,2/) = £ (Kv)% Xij(x,y), 
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where Xij(x,y) is the characteristic function of the i, j grid element. With these piecewise constant 
approximations of the functional gains, the control law (4.9) is approximated by 

M . M 

9M(t)=- JC(#u),j  /   uc(t,x,y)dxdy- £(#„)# I    vc(t,x,y)dxdy. (4.10) 

Observe that in (4.10) one needs only the spatial averages of the velocity fields over subdomains. 
Using the same finite difference-Galerkin scheme for uc, one obtains another level of approximation 

M M 

9M(t)=~ J2(Ku)% I   u?(t,x,y)dxdy- jr (KV)% f   v?(t,x,y)dxdy, (4.11) 

where (u^,v^) is the "low order" approximation of the distributed parameter observer equations. 
Observe that it is not necessary for the computational mesh to be "super fine" in order that the 
integral averages 

/    Uc(t,x,y)dxdy   and     /    v^(t,x,y)dxdy 

be "close" to the integrals 

/    uc(t,x,y)dxdy    and      /    vc(t,x,y)dxdy 

needed in (4.10). This provides the possibility of constructing robust finite dimensional (low order) 
controllers. 

There are two observer "functional gains" for each sensor.   In particular, the observer gain 
operator has the form 

i=i (_ JivK-c^y) 

Figures 4.3-4.5 show these "functional gains" (/iu) and (fiv) for various sensor locations. Observe 
that the observer gains are supported on neighborhoods of the sensor location. 

4.1.4    Conclusion 

Although we have described, in loose terms, an algorithm for low order control design, much work 
remains to be done before a sound theoretical framework can be completed. However, preliminary 
numerical results indicate that this approach offers considerable promise for practical design. 
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GRID=9x9 GRID=9x9 

3   0 

0   0 0   0 

Figure 4.2: The feedback functional gains 
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Re=100, GRID=11x11, (x1, y1)=(0, 0.2) 

£   0 

0   0 y -   « x 
(X2, y2)=(0, 0.3) 

>   0 

0   0 

0   0 y      - "       x 
(X3,y3)=(1,0.2) 

0   0 

0   0 y -   v, x 

(X4,y4)=(1,0.3) 

0   0 

0   0 0   0 

Figure 4.3: The observer functional gains, (j/i,j/2,y3,2/4)= (0.2,0.3,0.2,0.3) 
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Re=100, GRID=11x11, (x1, y1)=(0, 0.7) 

£   0 

0   0 y -   - x 
(x2, y2)=(0, 0.8) 

£   0 

0   0 

0   0 y        "   " x 
(x3,y3)=(1,0.7) 

0   0 

0   0 y -   - x 
(x4,y4)=(1,0.8) 

0   0 

0   0 0   0 

Figure 4.4: The observer functional gains, (2/1,2/2,2/3,2/4)= (0.7,0.8,0.7,0.8) 
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Re=100, GRID=11x11, (x1, y1 )=(0, 0.2) 

5   0 

0   0 y -   « x 
(x2, y2)=(0, 0.3) 

0   0 

0   0 y -   « x 
(x3,y3)=(1,0.7) 

0   0 

0   0 y        -   » x 
(x4,y4)=(1,0.8) 

0   0 

0   0 0   0 

Figure 4.5: The observer functional gains, (2/1,1/2,2/3,2/4)= (0.2,0.3,0.7,0.8) 
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4.2    Reduced Basis Approach to Design of Low Order Feed- 
back Controllers 

In this section, we discuss an approach to the development of low order nonlinear feedback controllers 
for hybrid distributed parameter systems. This approach involves the use of distributed parameter 
control theory to design "optimal" infinite dimensional feedback control laws and approximation 
theory to design and compute low order finite dimensional compensators. The resulting finite di- 
mensional controller combines a nonlinear observer with a linear feedback law to produce a practical 
design. We concentrate on a weakly nonlinear distributed parameter system to illustrate the ideas. 

The development of feedback controllers for nonlinear partial differential equations (PDEs) is 
one of the most basic problems that must be faced before one can address active control problems 
for fluid flows and nonlinear structures. In fluid flows the Navier-Stokes equations serve as the 
fundamental model. It is common practice to first discretize the distributed model and then to 
use the corresponding lumped parameter model in the controller design. For example, a three mode 
Ritz-Galerkin discretization (one in velocity and two in temperature) applied to a thermal convection 
loop, reduces the Boussinesq equations for fluid convection to a hybrid system of nonlinear ordinary 
differential equations (i.e., the Lorenz equations) coupled to an infinite dimensional "linear" system. 
It can be shown that introducing truncated Bessel function approximations produces reasonable 
open-loop models for simulation. Several papers have now appeared that discuss the feasibility 
of using feedback to control and stabilize these finite dimensional chaotic systems. Although this 
"approximate-then-design" method often works well, it is also well known that this approach can 
lead to erroneous results and one must exercise care to ensure that the resulting design is robust. 
Moreover, the information lost in modal truncation can be used to enhance performance (even when 
one "truncates only linear terms") and to ensure robust feedback design. 

Using the "approximate-then-design" approach to feedback control of distributed parameter sys- 
tems, a simple example of a nonlinear system can be constructed with the property that many 
standard discretized lumped models failed to capture the essential nonlinear behavior of the dy- 
namic system governed by the partial differential equation. We shall use this example to illustrate 
a "design-then-approximate" approach to the control nonlinear distributed parameter systems. The 
basic idea is to use infinite dimensional control theory to design a feedback law and then use rigorous 
numerical approximations to construct practical finite dimensional controllers. The goal is to show 
how the method can be applied to PDE systems and to illustrate the benefits of using distributed 
parameter control theory to help guide the design of practical controllers. For this reason we do 
not attempt to design the "best" nonlinear controller. In particular, we limit our discussion to non- 
linear controllers defined by linear feedback laws combined with low order nonlinear observers. We 
compare a distributed parameter LQG-type design (extended Kaiman filter), for which the theory is 
complete, with a distributed parameter MinMax-type design, even though the MinMax approxima- 
tion theory is not complete. The MinMax approach provides a "robust state feedback control law" 
which is less sensitive to disturbances and certain unmodeled dynamics than is the LQG design. 

The idea is to obtain a representation of the linear control law and then use approximation 
theory to compute finite dimensional suboptimal controllers. These suboptimal controllers can then 
be used in conjunction with reduced basis ideas to design low order nonlinear state estimators. It 
is important to note that any practical feedback controller designed for a distributed parameter 
system must incorporate some type of "state estimator" and, regardless of the approach, one must 
introduce approximations at some point in the analysis. We introduce approximations at the last 
stage of the design. It is also important to note that the resulting feedback controller is nonlinear 
and finite dimensional. 

The Model 

We consider a hybrid distributed parameter system. This model represents the nonlinear dynamic 
response of a relief valve used to protect a pneumatic system from overpressure. The valve mechanics 
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consist of a ball pressed by a uniform helical spring against a valve seat having nonlinear elastic 
characteristics. The helical spring is considered to be a distributed parameter system, and its motion 
is governed by the wave equation subject to appropriate boundary conditions. Specifically, the spring 
is fixed at one end. In addition to the forces exerted by the spring and the valve seat, the ball is 
subjected to a pressure where it comes in contact with the fluid. The pressure consists of a static 
component and a sinusoidally varying dynamic component. This sinusoidal term results from small 
vibrations in the pneumatic transmission lines. The equations for this hybrid system are 

d2    ,     s 

d2 

with boundary condition 

d_ 

ds 
r9iU,(M)+79^w(i's) 

+T](t) + U(t), 

,   o < s < e, t > o, 

-a1w(tj)-a3[w(t,e)}3 

w(t,0) = 0. 

To obtain a solution to the system, initial conditions are chosen of the form 

w(0, s) = w0(s),     g£to(0, s) = wi(s). 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Here, w(t, s) represents the displacement of the spring at time t, position s, w(t, £) represents 
the position of the mass at time t, p and m are the densities of the spring and mass respectively, 
r is Young's modulus for the spring, and 7 is a damping coefficient. The oti's are the coefficients 
describing the nonlinear effects of the valve seat. The term r){t) is viewed as a disturbance and u(t) 
is a control input. 

Another way of viewing this model is to imagine an elastic cable which is fixed at one end and 
attached to a mass at the other. The mass is suspended by a spring which has nonlinear stiffening 
terms and is forced by a sinusoidal disturbance (see Figure 4.6). In this case, w(t, s) represents the 
displacement of the cable at time t, and position s, w(t,£) represents the position of the mass at 
time t, p and m are the densities of the cable and mass respectively, T is the tension in the cable, and 
7 is a damping coefficient. The ax and a3 are spring stiffness constants with the latter describing 
the nonlinear effects of the spring. 

s=0 

w(t,s) 

Figure 4.6: Cable-mass system 

This view of the problem allows for a simple description of the control problem and clearly 
illustrates the hybrid nature of the system. In particular, the system is described by a linear partial 
differential equation (the wave equation) coupled, through the boundary condition, to a low order 
nonlinear ordinary differential equation (Dufnng's equation). We are interested in using sensed 
information to design a feedback controller that attenuates the disturbance r](t). In particular, we 
assume that the control is allowed to act exclusively on the mass and the only measured information 
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available to the controller is the position and velocity at the mass, i.e., there are two observations 
yi(t) and y2(t) where 

yi(t)=w{t,e)+Z1(t),     y2(t) = jtw(t,e)+b(t), (4.16) 

and fi(t), &(*) represent sensor noise. 

4.2.1    Abstract Formulation 

Herein, we apply what have now become "standard" techniques from distributed parameter control 
theory. In order to do this properly, care must be taken to formulate the second order (hyperbolic 
system) as a first order system in the proper state space. As will be shown later, the precise form 
of the state space provides essential information about practical issues concerning the placement of 
sensors and the design of the nonlinear observer. 

This model is often first written as a second order system in a Hilbert space H of the form 

C(t) + DoC(t) + A0C(t) + F0(C(t)) = B0u(t) + Gov(t) (4.17) 

where we use the notation £ = §-tC- For the cable-mass problem considered here, H = L2(0,1) x H1 

and C(i) is given by C(0 = [w(t,-),w(t,£)]T. In addition, as we consider Kelvin-Voigt damping in 
our system, D0 = A0. 

This formal system has the advantage that it has the same appearance as the finite dimensional 
case and in order to address viscous and "structural" damping one merely replaces D0 = A0 with 
D0 = I and D0 = [A0]1/2, respectively. We note however, that it is more consistent with physics to 
write the system in the form 

C(i) + S*(Sat) + TTC(*)) + -Fo(CW) = B0u{t) + Gov(t) (4.18) 

where S = T = [A0]1/2. Observe that A0 = A*Q > 0 and so S* = S and S*S = S*T = A0. Hence, 
(4.18) is formally obtained by factoring [,4o]1/2 out of the expression D0C(t) + A0C(t) in (4.17). Note 
also that (4.18) is of a form that allows for structural damping where S = [J4O]

1/2
 and T = /, as 

well as for viscous damping where 5 = [A0}1/2 and T = 5_1 = [A0]-1/2. In addition, by writing the 
system in the second order form (4.18), one captures a form that comes from balance laws and at 
the same time sets the stage for a simple formulation of the problem in first order state space form. 

The system governed by equations (4.12) - (4.16) can be written as a dynamical system in an 
appropriate (infinite dimensional) state space. Although there are several equivalent formulations 
for this problem, we shall write the governing equations as the first order system 

x(t) = Ax{t) + F(x{t)) + Bu{t) + Gr){t),        x(0) = x0 

(4.19) 
y(t) = Cx{t) + E£(t) 

where at time t the state x(t) = [£(*), (,{t))T lies in the Hilbert space X = H\ x Ex L2 x 1R. Here, Hi 
is the subspace of the Sobolev space H1 = H^OJ) defined by Hi = Hl(0J) = {w 6 H1 : w(0) = 
0}, and L2 = L2(0,e) is the standard Lebesgue space of square integrable functions. The control 
u(t) lies in the control space U = IR; the observation (or state measurement) y(t) = {yi(t),y2(t))

T 

belongs to Y = IR2. Denote w(t,£) = we and w — v. Then the inner product in X is 

([w{-),wt, v(-), ve]T, [w(-),we, v(-),ve]T) = T      —w(s)—w{s)ds + aiwewe 

/»   ds ds (4.20) 
+p /   v(s)v(s)ds + mveve- 

Jo 
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It is important to precisely define the system operators and their domains in order to obtain 
correct representations of the feedback operators that will be used to control the system. Let 81 
denote the "evaluation operator" defined on if1(0, £) by <5f (<£(•)) = <j>(£) and define the linear operator 
A on the domain V(A) CXby 

V(A) = \x=[w,wt,v,vt]T € X:w,v € Hl
L,\-^-w + l^-vXeH1, 

I. {pds        pas  J 

w(£) = we,v{£) = ve}, 

and 

Ax = d   (r d        7<i   1      ,( 
v,ve, -j- < --T-W + -—v } ,-6t< 

ds {pds        pds  ) \ 
T d 7 d 
 —w H -v 
mds        mds m 

-W( 

(4.21) 

(4.22) 

The control input operator B, the disturbance operator G and the output operator C are defined 
by 

T=GandC=
r°    l    °    ° B = 0,0,0, 

1 
m 0   0    0    1 (4.23) 

respectively. The operator E is the 2 x 2 identity and the nonlinear operator F is defined on X by 

F(x) = F([w(-),we,v(-),ve]T) = [o,0,0, ■ 
a3 r    ,3 —m\ 
m 

= [0,0,0,F0(«;/)]a (4.24) 

where Fo : R —> R is continuous. 
Before discussing the control problem we present the basic properties of the dynamical system 

defined by (4.21)-(4.22). First we note that the linearized problem is well posed and analytic. The 
important issue here is that A generates a exponentially stable analytic semigroup S(t) = eAt on X. 

Theorem 1  The operator A in defined by (4.21)-(4.22) is the infinitesimal generator of an analytic 
semigroup S(t) on X satisfying \\S(t)\\ < Me~ßt for some p, > 0. 

Although we consider only Kelvin-Voigt damping here, the above theorem holds for structural 
damping where D0 = [A0]1/2 or, in fact, for any damping operator of the form D0 = [A0]a for 
\ < ct < 1. Moreover, the following theorem shows that the nonlinear system also has global 
solutions for each xo € X, and that the zero solution is an exponentially equilibrium. 

Theorem 2 For each xo G X, the unforced nonlinear system (4-19) has a unique global mild solution 
x(t) and there exists a constant N(x0) such that \\x(t)\\ < N(x0) for all t > 0. If XQ € T>(A), then 
the mild solution is a classical solution. Moreover, there exist X > 0, ß > 0 and M > 0 such that if 
||a;o|| < A/2M, then \\x(t)\\ < 2Me~ßt \\x0\\. 

Proof. Given M > 0, let c be a constant such that 

Mfe-^=«<1/4 c J0 cp 

and select A > 0 such that if ||x|| < A, then 

||F(x)|| = |FoM = ^K|3<^ 
m c 
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If xo € X and ||i0|| < j$j, then the mild solution given by 

x(t) = S(t)x0 + [ S(t- s)F(x(s))ds 
Jo 

exists on a finite interval 0 < t < ti for some ti > 0 and satisfies 

\\x(t)\\<X,   0<t<U. 

If ti is chosen as large as possible, then either ti = +00 or ||x(*i)|| = A. If ii < +00 and t < t\, then 
||x(t)|| < A and 

||x(t)||    <    \\S(t)x0\\+ f \\S(t-s)F(x(s))\\ds 
Jo 

<    Me'"1 llxoll +M f e-^1-^ \\F(x(s))\\ ds. 
Jo 

Since 

M f e-^-s)||F(x(s))||dS    <    — f e-^-^Wx^Wds 
Jo c Jo 

2        c 

it follows that for all 0 < t < ti 

0 

A     MA   f°°     „, , <    - + — J     e-^ds, 

x{t)\\    <    Me'»1 llxoll + — / e-"(*-s> ||x(s)|| ds 
c   Jo 

f Jo 

.    A     MA  f°° 
< - +  /     e ^ds 2        c 

< " + *. 
~    2      4 

Hence ||x(*i)|| < ^ < A. Thus, ti = +00 and the solution exists for all positive time. If 
xo € ~D(A), then it can be shown that the mild solution is a classical solution. 

In order to obtain exponential stability, let h(t) = e^ \\x{t)\\ and note that 0 < h(t) and 

h(t) = \\x(t)\\ e*    <    M llxoll + — / e"s ||(x(S))|| ds 
c Jo 

....    „     M  f* ,. . , 
=   M ||xo|| -I /   h(s)ds. 

c Jo 

Gronwall's inequality implies that 

h(t) = \\x(t)\\e*t<M Uxoll e*«, 

or equivalently, that 
||x(*)|| < M Uxoll c-<"-*>* = Me"*31 Uxoll, 

where ß = (/j. - ^) > 0. This completes the proof. 
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The Nonlinear Control Problem 

Since xe = 0 is the only equilibrium for the unforced (r)(t) = 0) nonlinear system we concentrate on 
the stability of this equilibrium. Given the nonlinear control system 

with sensed output 

x(t) = Ax(t) + F(x{t)) + Bu(t) + Gr)(t),        x(0) = x0 

y(t) = Cx(t) + Eat), 

(4.25) 

(4.26) 

the goal is to find a controller u(t) that enhances the stability of xe = 0 for the unforced nonlinear 
plant and attenuates the disturbance. We shall design a controller of the form 

u{t) = -K MxM 
(*). (4.27) 

where x^f(t) satisfies a finite dimensional nonlinear compensator equation driven by the sensed 
output y(t) defined by (4.26) and KM is a bounded linear operator. This is done in steps. First 
we use linearization and infinite dimensional LQG and MinMax control theory to find an infinite 
dimensional linear feedback law based on dynamic compensation. The representation of the feedback 
gain operator is then used to construct approximate feedback operators and this information can 
then be applied to construct low order nonlinear state estimators. It is important to note that even 
though the feedback law is linear, the controller is nonlinear due to the nonlinearity of the dynamic 
compensator. Although the basic idea is rather standard for finite dimensional systems (extended 
Kaiman filtering), we shall see how working directly with the distributed parameter model can lead 
to new insights and practical controllers based on rigorous approximation theory. Also, we show 
how the use of reduced basis techniques from finite element theory can greatly enhance the design of 
low order controllers without loss in performance and robustness. 

MinMax and LQG Design for the Linearized Control Problem 

Linearizing (4.25) about xe = 0, one obtains the linear distributed parameter control system defined 
on X by 

z(t) = Az(t) + Bu(t) + Gr)(t),    z(0) = z0 (4.28) 

with sensed output 
y(t) = Cz(t) + E£(t). (4.29) 

As mentioned above, rather than using full state feedback we design a state estimator, zc(t), satis- 
fying the linear system on X 

zc(t) = Aczc(t) + Fcy(t),   zc(0) = zc 

and use the linear feedback law 
u(t) = -Kzc(t), 

(4.30) 

(4.31) 

where Ac, Fc and K are operators to be determined.   If (4.31) is inserted into the linear system 
(4.28), then one has the closed-loop system defined by 

dt 
z(t) 
Zeit) 

A 
FCC 

-BK 
Ar 

Z(t) 
*c(t) 

+ G 
0 

0 
FCE 

v(t) (4.32) 

The infinite dimensional controller defined above is completely determined by the three operators 
Ac, Fc and K. To determine these operators, we will use both LQG and MinMax design. It is well 
known that this approach is equivalent to finding the optimal solution to a quadratic differential 
game. However, we do not wish to devote time here to the discussion of this aspect of the problem. 
Our interest lies only in the fact that the MinMax controller stabilizes the system and attenuates 
the disturbance to controlled output map.   We shall see that it performs this task much better 
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than the LQG controller and, when combined with the reduced basis compensator, has reasonable 
robustness properties. Thus, we shall present only the items essential to the construction of the 
MinMax controller. In particular, assume that Q = Q* > 0 and M = M* = GG* > 0 are bounded 
linear operators on X and r > 0. Also, since E — I2X2 it follows that N - EE* = I > 0. For each 
6 > 0 consider the Riccati equations 

A*U + ILA - n [Br~lB* - 62M] U + Q = 0 (4.33) 

and 
AP + PA* -P [C*C - 62Q] P + M = 0. (4.34) 

Since B and C are bounded linear operators and the linearized system is exponentially stable, the 
theory implies that, for sufficiently small 6, the Riccati equations (4.33) and (4.34) have minimal 
solutions lie > 0 and PQ > 0, respectively. In addition, the operator [/ - d2PeUe] is positive definite, 
i.e., 

[/ - 92PgUe\ > 0. (4.35) 

If one defines 

Ke - r~lB*Ile, 

Fe = lI-e2PeUe}-1PgC*, (4-36) 

Ae = A - BKB - F9C + 6>2Affl0, 

then the corresponding control can be written in the form 

ug(t) = -r^B^Uz^t) = -Kezc{t). (4.37) 

Observe that for 8 = 0 the resulting controller is the LQG (i.e., Kaiman Filter) controller. 

The Infinite Dimensional Nonlinear Controller 

If we now substitute the Kg, Fg, and Ag as computed above for the linear system into the nonlinear 
system, then the resulting nonlinear observer becomes 

xc(t) = Agxc(t) + F(xc(t)) + Fgy(t),   xc(0) = xC0. 

We shall assume that the feedback law is of the form 

uni(t) = -Kgxc(t), 

where Kg is a bounded linear operator. 
The resulting closed loop nonlinear system formed by the above design can be written 

(4.38) 

(4.39) 

dt 

x(t) 

xc(t) 

A 

FgC 

-BKg 

Ag 

+ 

x{t) 
-\- ' F(x(t))  ' 

G 

xc(t) 

0 r lit)' 

*c(*))  . 

0 FgE J (*) . 

(4.40) 

In the case of a linear system, results exist which guarantee exponential stability of this closed loop 
system under the above control/compensator design. Though we have no such theory for the linear 
control law applied to the nonlinear problem, we know from the above theorem that the uncontrolled 
problem is exponentially stable. Therefore, we expect the above controller to further stabilize the 
system and to attenuate the disturbance. The nonlinear controller denned by (4.38)-(4.39) is infinite 
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dimensional and, before one can make use of this structure, approximations must be introduced. 
However, considerable practical information can be extracted from this infinite dimensional controller 
that greatly enhances the development of "good" low order approximations. To illustrate this idea 
we first make use of representation theory to obtain explicit forms for the linear feedback law. 

The nonlinear control law defined by (4.39) has the representation 

pkv,(s)—wc(t,s)ds- /   Tks(s)—wc(t,s)ds 
(4.41) 

-mkVm g^Wc(t, £) - aikdwc{t, £) 

where kVs{s) and kVm are the velocity gains for the string and mass, respectively, ks(s) is the strain 
gain for the string, kd is the displacement gain for the mass, and wc(t,s) is the solution to the 
nonlinear partial differential equation corresponding to the estimated "state", i.e., 

xe{t) = [wc{t, •), wc{t,£), öj.wc(t, ■), Q-Wcit,£)}T- 

The form of the control law in (4.41) is obtained using the integral representation of the feedback 
gain operator Kg : X —> 1R. The "functional gains" kVa{s) and ks(s) are known to belong to 
L2(0,£). Moreover, during the past ten years convergent numerical algorithms have been developed 
to compute these functional gains. Most of these schemes are based on finite element methods which 
use splines to compute numerical approximations of the functional gains kVt(s) and ks(s) and the 
gains kVm and kj. We shall use such schemes not only to compute the infinite dimensional controller, 
but to construct practical finite dimensional controllers of low order. 

The observer gain operator Fe : R2 —> X is continuous and has range in V(A) C X. Therefore, 
there exist functions gi(s),g2(s),hi(s) and h2(s) in Hl(0,£) such that 

Fe 
2/1 
2/2 

9x{s) hi(s) 
9i{£) hit) 
g2(s) h2(s) 
92{£) h2{£) 

2/i 
2/2 

ex (4.42) 

The functions 9i(s),g2(s),hi(s) and h2(s) are called the observer functional gains and will be ap- 
proximated by a reduced basis finite element scheme. 

The design process proceeds in two steps: 

1: The infinite dimensional controller is "computed" by using finite element approximations (of 
high order) of the Riccati equations (4.33)-(4.34). This provides accurate approximations 
of the functional gains kVa(s) and ks(s). By introducing "optimal" nodal placement, one 
approximates kv„(s) and ks(s) by low order splines (or even step functions). The spatial 
structure of the functional gains is used to guide the selection of the optimal projection. 

2: A reduced basis-finite element approximation of the nonlinear observer equation is constructed 
and combined with the low order approximation of the observer functional gains to produce a 
low order nonlinear controller. 

This approach makes use of the structure of the full infinite dimensional nonlinear control law 
and hence often leads to a control design that is "better" than one might obtain by blindly intro- 
ducing approximations at the outset. This process is illustrated in the next section where numerical 
experiments are provided to illustrate the ideas and benefits of this approach. 

4.2.2    Approximations 

We shall apply standard finite element approximation techniques to the system described above. 
Although it is not essential to use finite elements, we restrict our attention to this approach because 
it is easy to implement and there is a well established convergence theory. 
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Observe that X = E x H where E = Hl x R with energy inner product 

([w(-), we]T, [w(-),we]T)E = T /   —w(s)—w{s)ds + aiwewe 

and H = L2 x El with inner product 

(N0>v<]Ti [v(-),ve]T)n = P      v(s)v(s)ds + mveve. 
Jo 

(4.43) 

(4.44) 

In order to write this problem in a form that is conducive to numerical computation, we use 
the variational form of the problem. We take the state as defined above. To provide a class of test 
functions for the variational form, we define another Hubert space V C E by 

V = {ip = [M-),HT e E : nil) = <p2} . 

The weak form of (4.12)-(4.15) is given by the variational equation for each y> = [y?i(-)> <P2]T € V; 

d r    d f   \   d d 
I   Pdiv^s^^s)ds+       r^^C^s) + 7^«(*,s) ds 

ipi(s)ds 

d 
+m—ve<p2 + [aiwe + a3[we]3] ip2 = [u(t) + r](t)](p2, dt 

with initial condition 
w(0,s) = WQ,     V(0,S) — W\. 

(4.45) 

(4.46) 

Finite Dimensional Approximations 

A Galerkin-based finite element approximation scheme is applied to the variational form of the 
problem to obtain a sequence of finite dimensional systems suitable for computation. We choose a 
basis {ei)i=1 for the approximating space VN C V so that the state is approximated by a linear 
combination of the basis vectors. We use linear B-splines to approximate the position of the spring; 
after matching the fixed end boundary condition, there are N splines along the interval [0,1) which 
we denote as {bi(s)}^=l. Thus, the basis vectors will be of the form 

ef = i = l,---,N. (4.47) 

Since the Nth linear-B spline is the only spline which is nonzero at s = £, the second entry of the 
basis vectors is zero for i = 1, • • •, N — 1, and is one for i = N. Thus we approximate the state as 

w(t,s) 
w(tj) 

wN(t,s) 
wN(t,£) 

N 

= EtfWw 
t=i CATC*) 

(4.48) 

Substituting this approximation to the state into the variational form in equations (4.45) and (4.46) 
letting the test functions <p range over the basis vectors, we obtain the finite dimensional system 

M
"IK"W + DoftC

N (t) + A»{N(t) + F»«;N(t)) = B»u(t) + Gfat), dt2 

c»=c, |c»=cr. 
(4.49) 

In (4.49), CN(t) = {tC(t),(;2(t),...,<;%{t)}T, MN is the mass matrix, Dj? is the damping matrix, 
AQ is the linear stiffness matrix, F^i^it)) contains the nonlinear terms, BQ is the input matrix, 
and GN is the disturbance matrix given by 
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[MNki = I pb?(s)b?(s)ds + mb?(e)b»(e),     i,j = l,...,N 
Jo 

[D°kj = / 7^(S)1^(S)' i>3 = 1>--,N 
[A°kj = £TlLb"(8)lLb"{8)d8 + arb?Wb"W>   iJ = h--,N 
F0

N(tN) = a3[w»}3 

B? = ±;[b?W,b»(l),...,b%(l)]T 

m 

G» = ±ib»(e),b»(e),...,b»(e)]T 

We write this finite element equation as the first order system 

d 

(4.50) 

dt 
xN(t) = ANxN(t) + FN(xN(t)) + BNu(t) + GN

V(t) 

xN(0) = xg, 

with output 
yN(t) = CNxN(t) + E£(t)e1R2, 

where x»(t) = [CN(i), i<N(t)]T, x» = [{», CX
N]T and 

(4.51) 

(4.52) 

*N 

-M-NA{?    -M-NDg 

F»{x»(t)) = 

B N 

0 

and C" = 

G N 

-M-NFf(wN(t)) 

Oixw-i    1    Oixjv-i    0 

OlxW-l     0    OixAf-i     1 

0 

-M-NB» 

0 

-M~NG» 
(4.53) 

Remark 1 It is important to note that (4.51) provides the approximation wN(t, s) of w(t, s) in the 
finite element space VN C V. In particular, 

ef = ,i = l,2,...,N 

is a basis for VN. More importantly, this approximation leads to a numerical method for com- 
puting the functional gains and for constructing finite dimensional observers. We shall use high 
order approximations to compute the functional gains and then "project" these gains onto a space 
of appropriate simple functions XM. To complete the design, a low order dynamic compensator 
is constructed by using a reduced basis/finite element approximation of the infinite dimensional 
compensator equation. This process produces a practical finite dimensional (nonlinear) controller 
and at the same time makes use of the structure of the infinite dimensional feedback law. Although 
there are several possible "reduced basis" spaces, we shall restrict our attention to the simplest case 
where the reduced basis space is a finite element space satisfying VM C VN C V with M « N. 
By using the space XM to approximate the functional gains, we do make use of the spatial structure 
of the feedback law. However, there is even the possibility of constructing local (in space) nonlinear 
observers. 

33 



The Reduced Basis Approach to Low Order Controller Design 

By considering the representation of the nonlinear control law given in (4.41), there are two obvious 
places where one can introduce approximations to obtain an approximate controller. First, the 
operator Ke can be replaced by an approximate operator Kg. This results in an approximation of 
the feedback gains and produces the approximate feedback control 

U%(t) = -Kg
WXc(t) = ~   f   pk^(s)^-Wc(t,s)ds-   f   Tk?(8)£-Wc(t,8)d8 

Jo ot Jo as (454) 

-mk^—we(t,i) - aikjfwc(t,t) 

where fc^(s) and k^(s) are approximations of the functional gains. Observe that this controller is 
still infinite dimensional. However, if one computes Kg  by solving the approximate Riccati equation 

[AN]*nN + nNAN - nN [ß^r1^]* - e2MN] uN + QN
 = o (4.55) 

and defining 
K$ = r-l[BN\*T$ 

then it is known that Kg -» Kg, or equivalently, that fc^(s) -+ kv,(s) and fcf (s) -+ ks(s). Unless 
one approximates the observer wc(t, s) then the controller is still infinite dimensional. Thus, we must 
also replace the infinite dimensional compensator equation by a finite dimensional compensator of 
the form 

x?{t) = A$lx?(t) + FM(xc{t)) + FJ'y(t),   *C
M(0) = < (4.56) 

where M < N. 
This second approximation is often accomplished by simply using the same M = N finite element 

model (4.51)-(4.52) and solving the corresponding Riccati equations 

ANpN + pN[ANy. _ pN ^CNycN _ e2QN} pN + MN = Q (4 5?) 

If this approach is used, then one can show that, for N = M sufficiently large, the resulting finite 
dimensional controller will have performance and robustness properties similar to the infinite dimen- 
sional controller. However, this approach can lead to large (non practical) observers and does not 
make full use of the information contained in structure of the functional gains. As one example of this 
idea, simply note that if there is a region in space, say 0 < s < b < £, where the functional gain ks(s) 
is zero (or small), then there is no reason to approximate the strain ^w(t,s) in the interval (0,6). 
This is illustrated in the numerical section below and often occurs in boundary control. Moreover, 
the control law (4.54) requires only that the weighted integral averages be computed and hence it is 
not always necessary to have high fidelity (global in space) models of the nonlinear observer. These 
observations indicate that reduced basis schemes may offer some improvement over straight forward 
approximate-then-design approaches. As we show below, this is the case for our model problem. 

Although the following approach can be made very general, we shall restrict our attention to one 
particular scheme in order to keep this work focused. The design is accomplished in stages: 

Stage 1: Select a fine mesh (large N) finite element approximation and compute the functional gains 
k„t(s) and fc^(s) (which, for all practical purposes will be kVs(s) and ks(s) using established 
convergence results). 

Stage 2: Select a low order numerical scheme that makes use of the structure of k^(s) and k^(s) and 
"project" these functional gains onto this space. This leads to a simplified control law by 
approximating the "converged" gains. We do this by taking an Pth order projection of the 
gains onto a space of step functions. The spatial domain [0, i] is subdivided by a mesh of the 
form 0 = SQ   < sf < • ■ • < Sp+l = £ where the nodes sf are clustered in neighborhoods in 
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which k^(s) and k^(s) are large and no nodes are placed in neighborhoods where k„(s) and 
k^(s) are essentially zero. Specifically, 

*.Ar(-)**.Ar-p(-)=E*5pxr>(-) 
i=l (4.58) 

i=l 

where 
AT 

xf,P(s)=J   1    s^<s<s 

0   otherwise 

0 = Sg < 8? < ■ • ■ < S$+i = t. 

(4.59) 

In this case, 

,N,P 
*.TW 

tik»{s)X^
P{s)ds        NM      _ lZkZ(s)X»>p(s)ds 

Jo Xi     (s)ds ri    N,P,  ■>, 
Jo Xi     (s)ds 

(4.60) 

With these piecewise constant approximations of the functional gains, the control law (4.41) 
is replaced by 

p 

t=i        •/sr 
T—wc(t, s)ds (4.61) 

a 
mk^m—wc(tj) - aikjfwc(t,t). >dt 

Observe that in (4.61) one now needs only the spatial averages of velocity and strain over 
subdomains where the averaged functional gains are "large". 

Stage 3: Select a reduced basis subspace of order M « N, VM C VN, and build the MinMax observer 
defined by (4.56) on the space VM. This produces approximations 9i1(s),g^(s),h^{s) and 
h^(s) of the observer functional gains 9i(s),g2(s), h^s) and h2(s), respectively and hence the 
approximate observer operator Fe

M : R2 -»• VM C X has the representation, 

F? 

g?{s) hf(s) 

Vi gfV) h?{l) yi 

2/2 ö2
M(s) h?(s) y2 

fl2
MW h?(i) 

ev M (4.62) 

Moreover, one has the natural "low order" estimate w™(t,s) of wc(t,s), which can now be 
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substituted into (4.61) to yield the approximate controller 

p 

Unl,P (0 = ~ l_j kv.,i    I N      P-Qt
Wc   (*» S)ds 

»=1        Jsi 

T — W?(t,8)ds 
(4.63) 

a 
-mk»m-wM(t,e) - aik»WM(tJ) 

The resulting closed loop nonlinear system formed by the above design can be written 

d 
dt 

x(t) 
= 

A -BK»>M x(t) 
+ 

F(x(t)) 

FM(xc(t)) 

+ 
G       0 v(t) 
0 Fe

ME m 
(4.64) 

Remark 2 Observe that it is not necessary for the finite element mesh to be "super fine" (i.e., M 
large) in order that the integral averages 

Js» 
d_ 

w™ (t, s)ds and tfr* s)ds 

be "close" to the integrals 

JsN   aiWc{t'a)dB and JsN   Ys
w^s^ds 

(4.65) 

(4.66) 

respectively. We note that there are several theoretical issues that remain to be addressed in the 
nonlinear case. However, the numerical results below indicate that this approach holds considerable 
promise as a design approach. 

Remark 3 In order to have confidence in the overall design, it is essential that the control design 
be robust. This is one reason we chose the MinMax design described above. However, the MinMax 
design only provides robustness in a limited sense and at this point there is no theoretical assurance 
that the reduced basis design will be robustly stable. However, we shall provide numerical evidence 
that show that the reduced basis controller does retain some robust stabilization properties. As 
numerical approximations must always be introduced in the design of distributed parameter systems, 
one may view the resulting numerical errors as (unstructured) parameter uncertainties and design 
for robust stability. 

4.2.3    Numerical Experiments and Conclusions 

Here we present results from two sets of numerical experiments for the cable mass system. They 
differ in the forcing disturbance which was applied to the system; all other system parameters and 
initial conditions were the same and the parameters are presented in the table below. It can be 
seen from the small choice for 7 that the spring is extremely lightly damped. Initial conditions were 
chosen tobe [w(t,s),v(t,s)\ =[s,-2], [IüC(0, s),vc(0, s)} - [0.5s, 0]. 
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Table 4.1: System Parameters 

p T 7 m e Ql "3 0 
1 1 .005 1.5 2 .01 3 1.21 

For Stage 1 described above, we chose the N = 32 finite dimensional approximation to the 
infinite dimensional system as convergence of the functional gains was clear at this level of mesh 
refinement. These "converged" gains are shown by the dashed lines in Figures 4.7 and 4.8. For 
Stage 2, we chose P = 2 . In Figures 4.7 and 4.8, the functional gains for strain, ks, and velocity, kv, 
for the LQG and MinMax compensators are plotted against the optimal second order projections 
(P = 2) described in the previous section. The number of and particular subintervals chosen on 
which to approximate the gains was based upon gain shape. Both strain and velocity gains for both 
designs showed little variation over the interval [0,1] and significant variation over [1,2] so these 
two subintervals were used to compute the approximate (reduced order) gains. The structure of the 
LQG and MinMax gains for N = 32 are similar in overall shape, but differences in numerical size 
lead to significant differences in the projected gains. Note that for the strain gain, the first value 
of the reduced order gain for LQG is nearly zero and the second value is about two-thirds of the 
MinMax gain. The velocity gains show significant differences in magnitude; the N = 32 MinMax 
gain attains a minimum value of about -3 and a maximum of nearly 8, while the LQG gain reaches 
only -1 and 1.5. These differences in magnitude produce marked differences in the reduced order 
velocity gains. 
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Figure 4.7: Controller functional gains for LQG compensator. 

As described in (4.62), there are four functional observer gains, gi(s), g2{s), hi(s), and h2{s). 
As with the controller gains, the observer gains for N = 32 are shown in Figure 4.9 by dashed lines 
and the gains for the reduced order observer, g^ (s), ^(s), h^{s), h^{s), (for M = 2) are shown 
by solid lines. The lumped gains (gi(£),..., h2(,£)) can be obtained from the value of the functional 
gains at s = I. 

For both of the simulation experiments discussed below, a value of N - 8 was used as TV = 32 
yielded too fine a mesh in terms of computational time. A reduced order basis was chosen with 
M = 2. As we shall show, the MinMax compensator performs better than the LQG compensator. 
More surprisingly perhaps, the MinMax second order compensator performs as well as, and in some 
respects better than the full order MinMax compensator. 
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Figure 4.8: Controller functional gains for MinMax compensator. 

-20 

Figure 4.9: Observer functional gains for MinMax reduced order compensator. 

Disturbance r?(i) = 5cos(.4803t) + 10cos(1.7644t) 

The sensor disturbance £(i) is assumed to be 0 and the system disturbance was chosen as i){t) = 
5 cos(.4803£) +10 cos(1.7644t). This particular forcing function was chosen because .4803 and 1.7644 
are the lowest two frequencies of the uncontrolled (open loop) system (i.e., the first two eigenvalues 
of AN). 

Technically, to qualify as chaotic behavior, the system should be forced at a single frequency, so 
one must be careful in applying concepts of chaos to this example. However, as shown in Figure 
4.10 by the dotted line, after 12000 seconds (i.e., 12 hours) the mass has never adopted a periodic 
orbit nor shown evidence of an attractor. Specifically, Figure 4.10 shows the phase plots of the 
open loop behavior of the mass (between 11800 and 12000 seconds) by the dotted line as compared 
to the behavior of the mass (between 0 and 200 seconds) when LQG and MinMax compensators 
are used to control the system.   Both drive the mass to a periodic (yet still complicated) orbit, 
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However, MinMax better attenuates the mass. The time histories for the mass position under LQG 
and MinMax design are shown in Figure 4.11. 
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Figure 4.10: Open loop vs. LQG and MinMax compensator phase portraits for the mass. 
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Figure 4.11: Time history of mass position with LQG and MinMax compensators. 

In Figure 4.12, the phase portraits for the mass are shown for the LQG compensator and the 
reduced (second) order LQG compensator. With the reduced order compensator, both attenuation 
and robustness are lost. However, as shown in Figure 4.13, there is no significant loss in either 
robustness or attenuation when one compares the mass phase portrait for the MinMax compensator 
with the phase portrait for the reduced (second) order compensator. 

The behavior of the mass represents only part of the story; the cable (the distributed part of the 
system) shows similar effects. In Figure 4.14, the phase portrait for mid-cable (s = 1) is plotted for 
the LQG and MinMax compensators. Once again, MinMax shows better attenuation of the cable. 
A comparison of the full and reduced order MinMax compensator phase plots and time histories for 
mid-cable are shown in Figure 4.15; as one can see, the mid-point of the cable adopts a periodic 
motion more quickly in the case of the reduced order compensator. Plots for other points along the 
cable showed similar results. 
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Figure 4.12: LQG full order vs. LQG reduced (second order) compensator phase portraits for the 
mass. 
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Figure 4.13: Minmax full order vs. Minmax reduced (second order) compensator phase portraits 
for the mass. 

Disturbance t](t) = 5 cos(2.2447i) 

As before, the sensor disturbance £(t) is assumed to be 0 but the system disturbance was chosen as 
t](t) = 5cos(2.2447t). This frequency for the forcing function is the sum of .4803 and 1.7644 (the 
frequencies in the previous example). This choice was made achieve "combination resonance". 

After 900 seconds (i.e., 15 minutes) the mass adopts a periodic orbit as shown in Figure 4.16 
by the solid line; the dotted line is the phase portrait or the mass between 0 and 500 seconds. In 
Figure 4.17, the phase portrait for the mass under LQG and MinMax compensation as compared to 
the open loop behavior is shown. Again, MinMax shows a marked improvement in attenuation; see 
also Figure 4.18 for the time histories. 

In Figure 4.19, the phase portraits for the mass are shown for the full and reduced order LQG 
compensators. There is a significant loss of attenuation with the reduced order compensator. Again, 
as seen in Figure 4.20, there is no significant loss in either robustness or attenuation when one 
compares the mass phase portrait for the MinMax compensator with the phase portrait for the 
reduced order compensator. 

For the mid-cable behavior, LQG compared unfavorably with MinMax as in the previous exper- 
iment. However, the MinMax reduced order compensator shows marked attenuation capabilities as 
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Figure 4.14: LQG vs. MinMax compensator phase portraits for mid-cable. 

minmax compensator minmax reduced order compensator 

-2 0 
mid-cable position 

-2 0 
mid-cable position 

100        150 
seconds 

200 100        150 
seconds 

200 

Figure 4.15: MinMax full order vs.  MinMax reduced (second) order compensator phase portraits 
and time histories for mid-cable. 

compared with the full order MinMax compensator (see Figure 4.21). 
Insight into the performance of the reduced order MinMax compensator can be obtained by 

computing stability radii for the system. The stability radius of a system gives a measure of the 
distance to the nearest unstable system, i.e., robustness. The stability radii for the open and closed 
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Figure 4.16: Phase portrait of open loop behavior of mass. 
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Figure 4.17: Open loop vs. LQG and MinMax compensator phase portraits for the mass. 

loop systems formed by various control designs are given below. The full order LQR controller 
(which we have not used in this discussion), is known to have good robustness results, and so its 
stability radius is included as a basis for comparison. While MinMax and LQG have similar radii 
which are an order of magnitude smaller than LQR, the reduced order MinMax compensator has a 
stability radius which is nearly as large as that of the full state LQR feedback control design. 

4.2.4    Conclusions 

We can use the results for this model for the MinMax controller to suggest sensor location and to 
construct a reduced order observer. The basic idea is illustrated in the finite dimensional case by 
letting hi denote the ith column of -BTP - -K. Then one can write uopt as the sum of a product 
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Figure 4.18: Time history of mass position with LQG and MinMax compensators. 
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Figure 4.19: LQG full order vs. LQG reduced (second order) compensator phase portraits for the 
mass. 

of the feedback gains, ki, and the states, x lopt ' 

N 

Uopt(t) = YlkiXi»Pt(t)- (4.67) 
i=l 

An initial approach to sensor placement would be place no sensors at states corresponding to 
gains which are zero.   Conversely, if some gain is large, then the corresponding state should be 

Table 4.2: Stability Radii 

Open loop .0003167 
LQR Full state .040609 
LQG Full order .00526176 
LQG Reduced order (N = 2) .01704709 
MinMax Full order .00416306 
MinMax Reduced order (N = 2) .02601083 
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Figure 4.20: Minmax full order vs.  Minmax reduced (second order) compensator phase portraits 
for the mass. 
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Figure 4.21: Time history of mid-cable position with MinMax full order and MinMax reduced 
(second) order compensators. 

sensed or estimated. However, it is important to note that this simple "analysis" does not take 
into account such issues as loss of robustness, performance and fault tolerance. Our use of stepwise 
approximations to the functional gains is a first step toward a reduced order compensator and 
practical design for implementation. 

In conclusion, our numerical experiments show the combination of the MinMax design and the 
reduced basis state estimator can lead to an effective reduced order nonlinear control law for a 
nonlinear system of partial and ordinary differential equations. In addition to the errors introduced 
by numerical approximations, the error that results from the reduced basis approximation of the 
nonlinear PDE can be viewed as unmodeled dynamics. These observations along with the numerical 
experiments above suggest that it is worthwhile to investigate the remaining theoretical questions 
and to investigate nonlinear robust control approaches to these distributed parameter systems. 
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4.3    Global Solvability for Damped Abstract Nonlinear Hy- 
perbolic Systems 

We consider abstract nonlinear second order in time systems with damping. The nonlinearity is 
assumed to satisfy a monotonicity condition as well as certain smoothness conditions. Well posedness 
of solutions is established and several examples of interest are discussed. A nonlinear variation-of- 
parameters representation for solutions in terms of an associated linear semigroup is also given. 

In this section, we present new well-posedness results for a class of nonlinear distributed pa- 
rameter models that arise in a number of applications. Our efforts are a continuation of our earlier 
endeavors on systems arising in so-called "smart" materials. Indeed, our efforts are basic to our even- 
tual goal of development of computational methodologies for the identification and control of smart 
material composites undergoing large deformations and/or deformations that fall within the regime 
of nonlinear stress-strain laws. It is well known in engineering applications that large deformations 
can occur even when strain levels remain relatively small. More important to certain emerging ap- 
plications involving composites and certain types of elastomers is that one encounters a nonlinear 
stress-strain relationship even in the case of small deformations. We describe one such application as 
a motivating example for the theoretical well-posedness discussions to follow in subsequent sections. 

A problem of fundamental interest and great importance in modern material sciences is the de- 
velopment of both passive and active ("smart") vibration devices constructed from polymer (long 
molecular chains of covalently bonded atoms often having cross-linking chains) composites such as 
elastomers filled with carbon black and/or silica or with active elements (i.e., piezoelectric, elec- 
trostrictive and magnetic or conductive particles). These rubber based products (even without 
active elements) involve very complex viscoelastic materials that are not at all like metals (where 
large deformations lead to permanent material changes) and do not satisfy the usual, well-developed 
linear theory of (infinitesimal) elasticity for deformable bodies. 

In considering macroscopic elastic behavior, one finds that the usual constitutive relationships 
(e.g., Hooke's law) or rheological equations of state for pure elastics are not applicable. Indeed, one 
observes nonlinearities in both material and geometric behavior - in general, there is a nonlinear 
relationship between stress and strain even for small strains. Moreover, deformations in the range 
of practical interest are large and infinitesimal based theories break down. 

In spite of these difficulties, there is a substantial literature on modeling of rubber-like elas- 
tomers, predominantly based on one of the two rather distinct approaches: (i) molecular (polymer 
chain) statistical thermodynamic formulations (ii) phenomenological (usually continuum) formula- 
tions involving stored energy or strain energy functions (SEF) and/or finite strain (FS) theories. 
In the phenomenological approach (which will be the basis of our motivating example here) most 
investigators begin with an isotropic material under homogeneous strain. 

Strain energy function theories typically embody only elastic properties of elastomers or rubbers 
and hence are mostly used in static (equilibrium) finite element analysis of materials (e.g. natural 
gum rubbers) that exhibit little or no hysteretic behavior. SEF material models, such as those 
of Mooney-Rivlin, Ogden, Treloar and numerous others, are based on strain invariants Iit where 
h = A? + A| + \\, I2 = A|A§ + A?A§ + AfA| and 73 = A?A|A| and the A, are the principal extension 
ratios (deformed length of unit vectors along directions parallel to the principal axes i.e. the axes of 
zero shear strain). 

The finite strain elastic theory of Rivlin is developed with a generalized Hooke's law in an 
analogy to infinitesimal strain elasticity but makes no "small deformation" assumption and includes 
higher order exact terms in its formulation. Moreover, finite stresses are defined relative to the 
deformed body and hence are the "true stresses" as opposed to the "nominal" or "engineering" 
stresses (relative to the undeformed body) one usually encounters in the infinitesimal linear elasticity 
used with metals. This Eulerian measure of strain (relative to a coordinate system convected with 
the deformations) - as opposed to the usual Lagrangian measure (relative to a fixed coordinate 
system for the undeformed body) - is an important feature of any development of models for use in 
analytical/computation/experimental investigations of rubber-like material bodies. 

45 



Whether one begins with a choice of the SEF or with Rivlin's finite strain formulation, one can use 
these along with standard material independent force and moment balance derivations as the basis 
of dynamical models. To illustrate this we take the simplest example: an isotropic, incompressible 
(A1A2A3 = 1) rubber-like rod under simple elongation with a finite applied stress in the principal 
axis direction x\. The finite stress theory leads to a true stress a = §{X2 - j-) for |Ai| < 1 or an 
engineering or nominal stress for what are termed neo-Hookean materials 

IT      £,.        1 , ,, „_. 
<reng = yi=j{\i-j2) (4-68) 

where in terms of deformation w in the x\ = x direction we have (since deformations in the y and 
z directions are negligible) 

A -  (1 + f=)2 <«., 
Here E is a generalized modulus of elasticity. 

This can be used in the Timoshenko theory for longitudinal vibrations of a rubber bar to obtain 
(p is the mass density, F is an applied external force) 

td
2w     dS      „ , 

pAHW-lTx=F <4-7°) 
where S, the internal (engineering) stress resultant, is given by 

AE 1 AE   t paw \ 5 = ir{Al-Äf} = — sUr) (4J1) 

with s(£) = 1 — f — (1 +£)-2 for |£| < 1 and A is the cross sectional area. This leads to the nonlinear 
partial differential equation 

Ad
2w      d  (EA   (dw\\      „ 

for dynamic longitudinal displacements of a neo-Hookean material rod in extension. Since a series 
expansion of s yields s(£) = 3£—3£2+4£3 —..., this is readily seen, in the case of small displacements, 
to reduce to the usual longitudinal deformation equation for Hookean materials. For our subsequent 
discussions, it is convenient to write (4.72) in the form 

Ad
2w      8 (EAdw\      d  (EA.fdwW      „ pAlw ~ fa I" fa) ~ fa {-Y9 {10-))= F <4-73) 

where g(£) = 1 — ,t * ,2 for -1 < £ < 1. This can be written in a generalized or variational form for 
a given set of boundary conditions. To be specific, suppose we have a slender rod of length £ that 
satisfies w(t,0) = w(t,£) = 0. Then defining V = H^(0,i) and U = L2{0,E) we obtain the usual 
Gelfand triple V ^ H « H* <-* V* where V* = H-\0,t). Then equation (4.73) along with the 
specified boundary conditions can be written in variational form 

pAwtt + Aiw + D*g(Dw) =F    in V* (4.74) 

where Ai € £(V, V*) is given by 

(Ai(p,ip)v,v = (~D(p,Dip\ 

and D = -^ G C(V,H) is the spatial differentiation operator. This model is unrealistic in that 
it does not include material damping which is known to be present in typical elastomers.   If one 
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assumes an internal damping of the form A2wt (the exact form of the internal dynamic damping 
mechanisms in elastomers is a subject of current research - almost nothing is found in the research 
literature on this even though it is a very important material property that is critical to design of 
"smart" elastomers), then the model in variational form for the neo-Hookean elastomer rod is given 
by 

pAwu + Aiw + A2wt + D*g{Dw) = F     in V* (4.75) 

4.3.1    Formulation of the Problem 

The remainder of this discussion is concerned with establishing global existence of weak solutions 
for a class of abstract nonlinear damped hyperbolic systems evolving in a complex separable Hubert 
space H (actually holding in the sense of V* as explained below): 

v>tt + Aiw + A2wt + N*g(Afw) = f(t) (4.76) 

v)(0) = fo (4.77) 

wt(0) = <p! (4.78) 

Throughout this work we assume there is a sequence of separable Hilbert spaces V, V2, 7i, V*, 
V£ forming a Gelfand quintuple satisfying 

V ^ V2 «-> H <-> V2* --» V* 

where we assume that the embedding V •-> V2 is dense and continuous with \\f\\v2 < c||y>||v for 
<p € V and V2 '-*• H is a dense compact embedding. We denote by ( , )y,v> etc., the usual duality 
products. These duality products are the extensions by continuity of the inner product in H, denoted 
by ( , ) throughout. The norm in H will be denoted by || • || while those in V, V2 etc. will carry 
an appropriate subscript. The operators A\ and A% are defined (under the assumptions below) 
as usual in terms of their sesquilinear forms a\ : V x V —> C and a2 : V2 x V2 —> <C. That is, 
Ai e £{V, V*),A2 G £(V2, V|) and (Ai<p,ip)v-,v = <ri{<P,tp), M2V,^>v2',v2 = M<P,^)- 

In addition, we make the following assumptions. 

Al) The form o\ is a Hermitian sesquilinear form: for ip,tp € V 

cri(<P,ip) = <ri(ip,<p)- (4.79) 

A2) The form <Ji is V bounded: for <p,tp € V 

ki(v,lfll<cilMlvlMlv. (4.80) 

A3) The form <j\ is strictly coercive on V: for tp € V 

Reai(<p,(p) = <j1(<p,tp)>ki\\(p\\l,     ki > 0. (4.81) 

A4) The form a2 is bounded on V2: for <p, ip € V2 

W2(<P,n<c2\\<p\\V2\\rP\\V2. (4.82) 

A5) The real part of a2 is coercive and is symmetric on V2: 

Re<72(y,v) + Ao|M|2>A2||v»||^    A:2>0,A0>0 (4.83) 

Re<x2(ip,ip) = Rea2{ip,<p), for any <p,ip € V2. (4.84) 
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We note that the condition in 4.84 is weaker than requiring that er2 be Hermitian. 

A6) The forcing term / satisfies 
/eL2([0,T],V2*). (4.85) 

A7) The operator A/" in the nonlinear term satisfies 

N € C(V, H) with IIAVII < Vk y\\v. (4.86) 

To prove that weak solutions are unique we need to replace A7) by the strengthened condition: 

A7a) The operator M satisfies 

M € £(V2, H) with \\M<p\\ < \/fc \\<p\\Va (4.87) 

and the range of A/" on V is dense in H. 

Note that (4.87) implies (4.86) with k = <?k. 

A8) The nonlinear function g : H -* H is a continuous nonlinear mapping of real gradient (or 
potential) type. This means that there exists a continuous Frechet-differentiable nonlinear 
functional G : H -> R1, whose Prechet derivative G'(<p) € C{H,Rl) at any <p € H can be 
represented in the form 

G'(ip)ip = Re{g((p), ip)     for any I/J € U. (4.88) 

We also require that there are constants Ci, C2, C3 and e > 0 such that 

—k-'ih - £)|M|2 - d < G{<p) < C2\\<pf + C3, (4.89) 

where k is from 4.86 and fci from 4.81. 

In the case V = V2 it is possible to take e = 0. 

A9) The nonlinear function g also satisfies 

\\9{v)\\<Ci\\<p\\+Ci,    if €H, (4.90) 

for some constants Ci, C2. 

An additional condition is necessary for uniqueness of solutions as well as for the integral equation 
semigroup formulation of the problem discussed in Section 4.3.6 below. 

A10) For any ip e Tithe Prechet derivative of g exists and satisfies 

g'(<p) € C(H,H) with \\g'(<p)\\c{H,-H) < C3. (4.91) 

Let CT denote the space of functions w : [0, T] —> H such that 

weCw([0,T],V2)nL°°([0,T],V) 

(W means weak continuity), and 

wt e Cw([0,T],n)f]L2([0,T],V2), 

where the time derivative wt is understood in the sense of distributions with values in a Hubert 
Space. The space CT is equipped with the norm 

IM|£T = ess sup  (IMOH + IK*)llv)+ ( f   IK(t)llvi*)      • (4.92) 
t€[0,T] Wo / 

48 



+a 

All) We assume that for any u, v € CT, the following inequality is satisfied for any t € [0, T]: 

J { Re(g(JSu(T)) - 9(MV(T)),MU(T) - Mv{r)) 

+k1k-
1\\Mu(T)-Afv(T)\\2}dt (4.93) 

Qf||u(T)-i;(T)||2<ft)      j>0, 

where a(£) > 0 is a continuous function in £ > 0 such that 

i) a(0) = 0, 

ii) there exists a first derivative such that a'(0) = 0. 

Note that 4.93 is satisfied if, for example, 

Re(s(</>) - g(il>), v-ip}+ kxk-iy - V||2 > 0 (4.94) 

for any ip,ip eH, where k and &i are the constants in 4.86 and 4.102. 

We say that w € £T is a weak solution of the problem 4.76- 4.78 with ip0 e V and ipi e H if it 
satisfies the equation: 

Jo   [ ~ ^T(T
)
,7?T(T

^ 
+ CTl (U,(T)'7?(T)) + ^2 K(T),T?(T)) + 

+ (fl(^tü(T))>^(T)>JdT + <tüt(t),17(t)> = 

= (Vi^(0)) + / (/(r),77(T))v.,v2dT, (4.95) 
./o 

for any * € [0, T] and any 7? € CT, as well as the initial condition 

w(0) = <p0. (4.96) 

We note that this notion of weak solution of (4.76)-(4.78) agrees with the usual one in that it 
yields via € L2([Q,T},V*) = L2([0,T], V)* with (4.76) holding in the sense of L2([0,T], V*). Also, 
the class of test functions r? used in this definition are somewhat smoother than necessary (e.g., see 
the remarks following (4.141) in the existence theorem below). 

4.3.2    The Main a priori Estimate 

Under our standing assumption Al)-A9) and the formulations of the previous section, Equation 
(4.76) or equivalently (4.95) can be written 

(wtt,v)v',v+tTi(w,ri)+a2(wuV) + {g{Mw),Mri,) = (/,r?)v-,v2 (4.97) 

for all r? € CT and for almost all t € [0,T]. 
Treating this equation formally for the present, choosing r) = wt and taking the real part we find 

that if a solution exists, it must satisfy: 

d  fl        2     1 1 
Jt |2IM   + 20l(w'w) + G^w) > + Re<T2(wt,wt) = Re(f,wt)v;y2 (4.98) 
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Here we have used the fact that due to 4.88 we have 

d 
,G{Mw) = Re(g(ßfw),Mwt). 

Using the conditions 4.79 - 4.83, 4.85, 4.86, (4.89) we obtain from 4.98: 

INII2 + elMlv + *2 / \\wT(T)\\l2dT < HvJill2 + CJI^OIIV + 
Jo 

r I Wfij)\\v-dT + 2A0 I \\wT(T)\\2dT + 2d + 2C3, (4.99) 
fc2 JO JO 

where c\ = c\ + 2kC2- 
To obtain 4.99 we first use 4.83 in 4.98 to obtain 

Jt ||KII
2
 + \vi(w,w) + G(Mw)\ + k2\\wt\\l2 < 

«Hllvi + ^ll/llva-+AolN||2 (4.100) 

for any 6 > 0. We next choose 8 = £2/2, integrate the terms in 4.100 from 0 to t and use 

ai(w, w) + 2G{Mw) > fcilMlv - *_1(*i - £)\\Mw\\2 ~ 2Ci 

> hWwlft - (k, - e)\\w\\l - 2d = e\\wfv - 2d, 

G(Aftpo) < kC2\\<Po\\2v + d 

and 

Wi{<Po,<Po)\ < ciUvollv- 

Having established 4.99, by ignoring the 2nd and 3rd terms on the left in 4.99 and applying Gronwall's 
lemma, we obtain 

IMOII2 < MIVill2 + CiWvoWv + Y2 £ H/MIß."*- + 2d + 2d J e2Aot. (4.101) 

Substituting 4.101 back into 4.99 we have 

IKH2 + e\\w\\l + k2 I ||tüT(T)||^dT < C, (4.102) 
Jo 

where the constant C = C(||yji||, ||yo||v, ll/IU2([o,T],v*)) is easily computable. 

4.3.3    Galerkin Approximations 

Let {4)k)kLi C V be any total linearly independent system in V. We assume without loss of generality 
that the elements rpj have been normalized in V and hence are uniformly bounded in H and V. 

We define the "Galerkin" approximations for (4.76) by 

TV 

fc=i 
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where the {ck(t)}k=1 are chosen so that wN(t) is the unique solution of 

^(wN(t),^) + a1(wN(t),rPj) + ±a2{wN{t),^) + 

(g(AfwN(t)),^j) = (/, ^)v.,Va (4.104) 

for j = 1,..., N, with initial conditions 

cf(0)=4,     |cfe» = 4, 

where {c$J, {c?k} are chosen so that tp0 = lim^^oo £f c^Vfe, ¥>i = hmjv^oo £f cffcV'fc where the 
limits are in the V and H sense, respectively. 

Multiplying 4.104 by £tc?(t) and summing over j = 1,..., AT, we obtain 4.98 with w replaced 
by wN. Repeating the above arguments, we then obtain 

\\w»f + e\\wN\\2v + k2 f\\w»{T)\\l2dT<C, (4.105) 
Jo 

where the constant C is independent of N, depending only on </?o,Vi and / as in the constant 
C of 4.102. (We note that the convergences tpjf ~* <p0 in V, tp? ->^inH guarantee uniform 
boundedness of Hy^llv ar»d H^fll-) 

4.3.4    Convergence of the Galerkin Approximations 

To establish existence of solutions to (4.76)-(4.78), we shall use the bounds of (4.105) to extract suc- 
cessive subsequences of the Galerkin approximations and argue that the final subsequence converges 
to a solution for the problem. In these arguments, we shall not distinguish subsequences but shall 
denote by the same symbol {wN} the subsequences of {u>N}~=i selected at each step. 

It follows from 4.105 that the set {wN} is bounded in C([0,T],V) C L2([0,T],V) and {w?} 
is bounded in C([0,T},H) and in L2([0,T},V2). This allows us to conclude that there exist a 
subsequence such that 

wN —>w weakly in L2([0, T], V) (4.106) 

w: N  , „T:„„,„l,l„ ;„   Tl w weakly in L2([0, T]), V2). (4.107) 

We can readily show that wt{t) exists in the V2 sense and wt{t) = w(t) a.e. in [0,T]. These 
considerations are sufficient to treat the linear problem. The nonlinear case requires some additional 
effort. 

The main lemma needed to carry out the proof of existence is the following. 

Lemma 1 There exists a subsequence {wN} of the original sequence of Galerkin approximations 
and w 6 CT such that the following statements hold. 

a) 
w N __., „„,„1,1,, :„   r2 w weakly in L2([0,T],V); (4.108) 

b) The set {wN} is an equicontinuous and bounded subset ofC([0,T], V2); moreover, 

wN(t) -> w(t) weakly in V2 (4.109) 

uniformly int <E [0,T], i.e., wN -> w in CV([0,T], V2); 

c) 
w? - wt weakly in L2([0, T], V2); (4.110) 
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d) The set {w^} is bounded in C([0,T],H) and equicontinuous in Cw([0,T], TL); moreover 

tuf(t) -» wt(t) weakly in H (4-111) 

uniformly int£ [0,T]; 

e) 
w? -> u>t strongly in L2{[0,T\,H); (4.112) 

/j T/iene exists ft € L2([0,T],W) sucft tfiaf 

g{NwN) -► ft weakly in L2([0,T],W). (4.113) 

Remark 1       i) The statements 4.108 and 4.110 are just repetitions of (4.106) and (4.107). State- 
ment f) follows immediately from (4.105), A7) and A9). 

ii) We shall make use of the following version of the Arzela- Ascoli theorem: If Y is a complete met- 
ric space and T C C([0, T],Y), then T is relatively compact if and only if T is equicontinuous 
and {/(*) : / € T} is relatively compact in Y for each t € [0, T). 

iii) Note that b) along with the compactness of the embedding V2 C H implies that 

wN ^w strongly in C([0,T\,H). (4.114) 

iv) Statement 4.110 does not imply 4.112, since the embedding L2([0,T], V2) C L2([0,T],H) is 
not compact even though V2 embeds compactly in H. 

For this lemma, we thus only need to prove the statements b), d) and e). We consider b) first. 
From the main a priori estimate (4.105) we see that {wN} is bounded in C([0,T], V): 

maxte[0,T]||w
N(t)||?,<e-1C'. (4.115) 

Since V <-> V2, the set is also bounded in C([0,T], V2). Furthermore, we have 

rt+At 2 

2 

\\wN(t + At)-wN(t)\\2   = 

v2 

w?(r)dT 

(rt+At \ * ,-t+At 
jf ||^(r)||v2drj    <Atjf \\w?(r)fV2dT 

<k2lCAt, (4.116) 

and the desired equicontinuity follows. The convergence statement (4.109) then results from use of 
the Arzela-Ascoli theorem (see ii) of Remark 1) with Y chosen as the appropriate closed bounded 
subset in V2 taken with the weak topology. (Recall that Y is then a compact metric space, and the 
equicontinuity in the sense of (4.116) implies the equicontinuity in the sense of the metric of Y.) 

Next, we turn to e) and use a lemma of Aubin which can be stated succinctly as follows: Let 
Xo <-» X <-► Xi where the embedding XQ <-» X is compact. Define the space 
Y = {y € L2([0,T],X0) : yt e L

2([0,r],Xi)} with norm 

IMIY = \\y\\L'{[o,T],xo) + llytllz^io.nx,)- 

Then the embedding Y <-+ L2([0,T],X) is compact. 
It is actually a corollary of the lemma which we use; it can be stated as follows for our configu- 

ration of spaces: Suppose {w?} is bounded in L2([0,T], V2) and {«/«} is bounded in L2([0,T], V*) 
then {w?} is relatively compact in L2([0,T},H). To obtain this corollary, choose 
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X0 = V2, X = H and Xi = V* in Aubin's lemma. 
Since we have {w^} bounded in L2([0,T], V2) by the a priori estimate (4.105), it suffices for e) 

of Lemma 1 to argue that {wg} is bounded in L2([0,T], V*). Since L2([0,T}, V) = L2([0,T], V)*, 
it is suffices to show that 

rp 

Km    =    I /  «(r),$(r))v-,vdr| 
Jo 

< Ä,||*||L2(|o,T],v)   for any * € L2([0,T],V). 

For fixed M, let $M be of the form $M(0 = Sfcli afc(*)^fe where a^ 6 C^O,!*]. From the 
equation for u;^ we find that for N > M we must have 

< 

»U(*M)\    =    I /  «(r),$M(r))v,vdr| 
Jo 

cJ   \\wN(T)\\v\\$M(T)\\vdT + c2 [   KN(T)||v2||<MT)||v2dr 
Jo Jo 

rp rp 

+      Vk  f     \\gWwN(T))\\\\$M(T)\\vdT+   f     \\f(T)\\V;\\9M(T)\\V2dT. 
Jo Jo 

From the a priori bounds, A9), A6) and standard inequalities, we find that this estimate leads 
to 

K?($M)| < All*jtflU*([o,T],v) (4-117) 

where the constant K depends on c\, C2, k, C, C\, C2 but not N or $M- Since elements of the form 
{$M}M=I ioTva a dense subset of L2([0, T], V), the desired boundedness is readily inferred and thus 
e) is established. 

Finally, we consider d). The boundedness statement follows from (4.105) and the convergence 
statement will once again follow from an application of Arzela-Ascoli in Cw([0,T],H) once we 
establish the equicontinuity. To do this we first note that 

\(w?(t + At) -w»(t),v)\    <    fc|M|v>/iÄti (4.118) 

for v € V which is obtained using arguments similar to those employed in obtaining (4.116) and 
(4.117). Assume now that tp € 7i and fix e > 0. For v £ V (and t,t + Ate [0, T]) we have 

\(w»(t + At)-w»(t),<p)\ 

< \(w?(t + At) - w?{t),v)\ + \(w?(t + At) - w?(t), V» - v)\ 

< fc||u||V\/jÄii + 2C||vJ-t;||, (4.119) 

where C is the constant from (4.105). Selecting v so that 2C\\ip — v\\ < e/2 we can conclude that the 
right hand side of (4.119) does not exceed e for any N if |At| < 6 = (e/2fc||t>||v)2, and the desired 
equicontinuity follows. 

Remark 2 We note that the statement b) of Lemma 1 can be strengthened. Namely, the set {wN} 
is equicontinuous in CW([0,T],V). Since, due to (4.105), it is also bounded in C([0,T],V) we can 
conclude that 

wN ->wmCw([0,T\,V). (4.120) 

The convergence (4.120) will not be used in the next section, where we show that w satisfies (4.95) 
and (4.96). However, (4.120) is important to verify that w € CT- Indeed, from Lemma 1 we can only 
conclude that w € CW([0,T],V2)        n        L2([0,T],V) and 
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wt € CW([0,T],H) n L2([0,T], V2), which is sufficient for (4.95) to make sense, but we cannot 
conclude that w € L°°([0,T],V). 

We sketch the proof of (4.120) which establishes, in fact, that w G Cw([0,T},V). Note that, due 
to our assumptions Al)-A3) on <TI, the mapping Ai : V —> V* is a topological isomorphism. Define 
dom^i = {v eV : AiV £W} = A{l(H). Since W is dense in V*, we see that dom.4i is dense in V. 
We prove the equicontinuity of {wN} in CV([0,T], V) assuming that V is equipped with the inner 
product <7i(-, •), which is equivalent to the original inner product in V. Let v € dom.4i. Then we 
have 

\a1(v,wN(t + At)-wN(t))\    =    \(Aiv,wN(t + At)-wN(t))\ 
/t+At 

\\w?(T)\\dT < VC\\Aiv\\ \At\,      (4.121) 

where C is the constant from (4.105). Since dom.4i is dense in V, the desired equicontinuity can be 
deduced from (4.121) by an argument similar to the one used in deriving d) from (4.118). 

4.3.5    Existence of Weak Solutions 

In this section we verify, based on Lemma 1, that it is possible to pass to the limit in an integral iden- 
tity (see 4.124 below) for the Galerkin approximations. We thus obtain the fundamental existence 
results. 

Theorem 3 Under assumptions Al) - A9) and All), there exists a weak solution of (4.76)-(4.78) 
(or equivalents (4.97), (4.77), (4-78)). If in addition, A7a) and A10) hold, then the solution is 
unique. 

To give the arguments for this theorem, we denote by VM (M = 1,2, • ■ •) the class of functions 
T) € CT, which can be represented in the form 

M 

i?(t) = ]£ afc(*Mt' (4.122) 
fc=i 

where ak e C
l([Q,T}). Let 

OO 

V=  U VM. (4.123) 
M=l 

It is obvious that V is dense in CT- Recalling the definition of the Galerkin approximation in 
4.103, 4.104, we multiply the jth equation in 4.104 by a.j(t), take the sum from 1 to M and integrate 
over [0, t] to obtain 

Jo 
{w?(T),TlT(T))+<T1(w

N(T),T1(T))+a2(w?(T),T1(T)) + 
10 

,.N (g(AfwN(T)),MV(r))] dr + (vi?(t),ri(t)) ~ «(0),ry(0)) 

= / {f(T),r)(T))v;,v2dT (4.124) 
Jo 

which is satisfied for all r? € VM , for M < N. 
Now, fix n € VM with M <N. Using 4.108-4.113, we can pass to the limit N -► oo in 4.124 and 

obtain 

["KM, T)T{T)) + (JI{W{T), 7?(T)) + 0-2(WT{T), T](T)) + I 0 

(h{T),tfr,(T))] dT + {wt(t),n(t)) - (VlM0)) 

= I  (f(r),r](T))v;y2dT. (4.125) 
Jo 
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Let us explain the latter statement in a more detailed manner. Note, first of all, that all the 
statements of Lemma 1 are true for any interval [0,t], t < T. Now, let us examine all four terms 
under the integral in the left-hand side of (4.124). To pass to the limit in the first term we only need 
the weak convergence 

w? —> wT in L2([0,t],H), which follows, e.g., from (4.110) or from (4.112). To treat the second 
term we note that for a fixed rj € CT the mapping u —» /0 cri(u(r),77(r))dT is a bounded linear 
functional on L2([0,t], V) due to (4.80). Therefore, this functional is weakly continuous, and we can 
pass to the limit due to (4.108). A similar argument holds for the third term due to (4.82). In the 
fourth term we can pass to the limit due to (4.113). 

Finally, in the first term outside the integral in the left side of (4.124) we can pass to the limit 
due to (4.111) and in the second term due to the fact that u>f (0) -+ <pi in H as N —► oo. 

Equation 4.125 is satisfied for all r\ € VM for all M, and, therefore for all J? € £T since V is dense 
in CT- 

Except for the term involving the limit function h, this is the equation for weak solutions (see 
(4.95)). The condition (4.96) is clearly satisfied since wN(0) —> ip0 in V as N —> oo. We argue 
that the h term is the correct term involving g(Afw(t)) to yield that the limit function w is a weak 
solution. 

To prove this we use the Minty-Browder monotonicity method. 

Lemma 2 For any rj € CT and for t € [0, T] 

f (g(Uw(T)),Afv(T)) dr= f (h(T),AfT](T)) dr (4.126) 
Jo Jo 

Proof: The condition 4.93 plays a crucial role in this proof. Combining 4.93 with 4.86, we obtain 

f   \Re(ff(7Vu(r)) - 9(MV(T)),NU(T) - MV{T)) + (4.127) 

■t x 1/2N 

dr + a[[ lo\HT)-v(r)fdr)      ) > 0, 0") 
for any u,v € CT- 

Now consider 4.127 with u = wN € CT and any v € VM C CT with M < N. Taking into account 
4.81 we obtain 

L 
t 

[Re(g(MwN
'(T)) - g(Afv(T)),MwN(T) - MV(T))+ (4.128) 

<T!(«;"(!-) - V(T),W
N

(T) - V(T))] dr + a (\\wN - v\\L^T],n)) > 0- 

We next return to 4.124 with rj = wN - v, (notice that this is possible since wN € VN and 
v e VM with M < N). Taking the real parts of both sides, we obtain an expression which can be 
written in the form 

Re f (g(MwN{T)),MwN(T)-Mv(T))dT = (4.129) 
Jo 

Re f  [(w^(T),w^(T)-vT(T))-ai(wN(r),wN(T)-v(r))- 
Jo 

-a2{w»'(T),W
N
\T) - V(T))] dr - Re(w?(t),wN{t) - v{t)) + 

+ Re«(0),wN(0) - v(0)) + Re f (f(r),wN(r) - v(r))V;,V2 dr 
Jo 
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Substituting 4.129 into 4.128 we obtain, after a straightforward simplification: for all v € VM 

(M <N) 

IK"ll£*([o,t],«) -\Rea2(w
N(t),wN(t)) (4.130) 

+\ Re<r2(/(0),^(0)) + Re/ [ - «(T),VT(T)) + 

+a2(w?(T),v(r)) + (f(r),wN(r) - v(r))v;y2 

-(g(Afv(T)),MwN(T) -MV(T)) - ^(«(T),«;^^) - v(r))   dr 

- Re(w? {t),wN(t) - v{t)) + Re(u;t
w(0), w"(0) - v(0)) 

+a (\\wN - V||L2([O,T],K)) > 0. 

Here we have used the fact that, due to the symmetry of the real part of a2 it follows that: 

Rea2(w?,wN) = ~ Rea2(wN,wN). 

Now the most important observation is that we can pass to the limit N —> oo in 4.130 to obtain 

Kll!*([o,T],«) - | R*<72(«;(t),«;(*)) (4-131) 

1 f* + -Rea2(w(0),w(0)) + Re /   [-{WT{T),VT(T)) 

+(72(WT{T),V(T)) + (f{T),w(r) - u(r))v2-,v2 

- (g(A/'u(r)),A/'iy(T) - Mv(r)) - OI(V(T),W{T) - V(T))} dr 

- Re(wt(t), w(t) - v{t)) + Re(wt(0), w(0) - v(0)) 

+0 (||tü - u||t2([0,T],W)) > 0 

The inequality 4.131 requires some discussion. In the first term in 4.130, we can pass to the limit 
due to the strong convergence in e) of Lemma 1. In the third term we can pass to the limit because 
wN(0) —► w(0) = tpo strongly in V and, therefore, also in V2. In all the terms under the integral we 
can pass to the limit due to the weak convergence a), b), c) and d) in Lemma 1. This limit can be 
justified by precisely the same arguments that were used to justify passing to the limit in (4.124). 
We only note that in the third term under the integral in (6.9) we use the weak convergence 

wN ^winL2([0,T},V2), 

which follows, from (4.108) or (4.109), and to pass to the limit in the fourth term we observe that 
(4.108) and (4.86) imply the weak convergence 

MwN ^ Afw in L2([0,T],H). 

In the next two terms outside the integral we can pass to the limit due to 4.111 and 4.114. 
Finally, in the last term we use the strong convergence wN —Hü in L2([0, T], H), which follows from 
4.114, and the fact that the function a is continuous. It remains to explain why we can pass to the 
limit in the second term of (4.130). Here we only have the weak convergence 

wN(t) -» w(t) in V2 (4.132) 
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for any t e [0,T]. 
From (4.82), (4.83), (4.84), Recr2(-,-) + A0|| ■ ||2 is topologically equivalent to the norm inner 

product on V2- Since norms are weakly lower semicontinuous in Hilbert spaces, when passing to the 
limit we have 

Rea2(w{t),w(t)) < lim^^ = Rea2(wN (t),wN(t)). (4.133) 

Taking into account the inequality in (4.130), we can thus obtain the desired inequality (4.131) when 
passing to the limit. Note that (4.131) is valid for any »eP = U^=1VM and, therefore, for any 
v e Lf. 

Now we return to (4.125). Observe that in this relation we can set r\ — w, since w € CT and 
(4.125) is valid for rj € CT- Taking the real parts of both sides, we obtain after a straightforward 
computation 

1 
IKHL'üO,*],«) + 7EeffjW<),«/(()) - -Rea2(w(0),w(0)) + (4.134) 

+ jf h W(T),W(T)) + Re(h(r),Mw(T)) - Re{f(r),w(T))v.V2 = dr + 

+ Re(wt{t),w(t)) - Re(wt(0),w{0)) = 0. 

Let us now consider (4.125) with r] = -v where v is from 4.131. Taking the real parts of both sides 
we obtain 

Rej  \(wT(T),vT(T))-(71(w(T),v(r))-a2(wT(r),v(T)) - (4.135) 

-(h(T),Afv(T)) + </(T),T;(T))V-,V2   dr - Re{wt(t),v(t)) + 

+ Re(wt(0),v(0)) = 0 

We next add the inequality (4.131) and the relations (4.134) and (4.135). After considerable can- 
cellation we arrive at 

f  \Re(h(T)-g(Afv{T)),Afw(T)-Afv(T)) + (4.136) 

+ai(w(r) - V(T),W(T) - V(T))   + a (\\w - u||L*([o,r],w)) > 0. 

Now take any 6 > 0 and let £ £ CT- Select 

v(t) = w(t) - ec(t). 

Substituting (4.137) into (4.136) and dividing by 0 > 0, we obtain 

j  \Re(h(r) - g(Mw(r) - 9ATC(T)),UC(T)) + 

+^i(C(r),C(r))   dT + fl-1a^||C|Ua((o,t]lW))>0, 

for any C € CT, 0 > 0. In (4.138) we can pass to the limit # —> 0 and obtain 

Re / {h(r) - g(Afw(T)),AT^(T)) dr > 0. 
Jo 

(4.137) 

(4.138) 

(4.139) 
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Here we have used the fact that g : H —> H is a continuous mapping. We have also used the fact 
that 

a(9p) 
hm -AJ2. = 0, for any p > 0, 

which follows from condition ii) following 4.93: o(0) = a'(0) = 0. 
The inequality 4.139 holds for all (, £ CT only if it holds for equality. Indeed, suppose that for 

some C we have a strict inequality in 4.139, then replacing (, by -(, we obtain a contradiction to 
4.139. Thus we have 

Re f (h(r) - g(Afw(T)),AfC(r)) dr = 0 (4.140) 
Jo 

for all C € CT. 
It remains to observe, that replacing C, in 4.140 by i(, we obtain that the imaginary part of the 

integral in 4.140 is also equal to zero. Lemma 2 is thus established and the proof of existence is 
complete. 

We turn next to the uniqueness statement of Theorem 3. Let w and v be two solutions of (4.97) 
corresponding to the data (p0, ipi,f. Then u = w-v satisfies u(0) = u((0) = 0 and 

(utt,T))vy + <Ti(u,r]) + a2(ut,ri) + (g(Afw) - g(Mv),Afr]) =0 (4.141) 

for all 77 € £T. 
At this point we observe that (4.141), as well as (4.97) and (4.95), will still be satisfied if we 

extend the class of test functions 77. Namely, (4.141) holds for r\ € MT, where MT denotes the 
space of functions 77: [0, T] —► H such that 

»7€CH,([0,T],V2)nI°o([0,T],V), 

77t€L2([0,T],V2). 

For fixed s € (0,T), let tp be defined by 

n*\     / -LSu(6)d9   t<s 
*('> = (<)' t>s 

so that ip(T) = 0, ip(s) = 0 and rp(t) e V for each t. Indeed, tp € Mr-  (Note that tp <£ £T, since 
tyt $■ Cw([0,T],7i).) The usual arguments reveal that 

jf {<u«(t).tf(t)>v,v + <ut(«),«(*)» dt = J° jt(ut(t),rp(t)) dt = 0. 

Hence, choosing 77 = tp in (4.141) and integrating we obtain 

{(ut(t),u(t)) -ai(u(t),tf(t)) -a2(ut(t),ip(t)) - {Ag(t),Mrl>(f))}dt = 0 I Jo 

where Ag(t) = g(Afw(t)) - g(Mv{t)). Since ijjt{t) = u(t), we can rewrite this as 

£±{\Mt)f-<riW),m)}dt 

Jo 

But since u(0) = 0, ip(s) = 0, this implies 

2Re f {a2(ut(t),i>(t)) + (Ag(t),Afm)}dt. 
Jo 

\\u(s)||2 + <7!(V(0), 0(0)) = 2fie / {<72(rxt(f),V(0) + (Ag(t),ßftl>(t))}dt. 
Jo 
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However, 

J a2(ut(t),m)dt    =     [  {jt<T2(u(t),iP(t))-V2(u(t),u(t))}dt 

=    - I   a2{u(t),u{t))dt 
Jo 

so that we obtain 

||u(s)||2+CTi(V(0),^(0)) + 2ße / a2(u(t),u(t))dt = 2Re f (Ag(t),Afip(t))dt. (4.142) 
Jo Jo 

Considering the last term in this equality, using A10) and A7a), we find 

|  f <A<K*),W))<ft| 
Jo 

=    I f ( [ 9'(SAfw(t) + (1 - 6)Mv(t)) \/Vw(t) - Afv(t)} d6, - fs Uu{6)de\ dt\ 

<     [S{C3\\Afw(t)-tfv(t)\\ [' \\Mu(6)\\d6}dt 

< r cz\\Nu{t)\\dt r \\Nu{e)\\de 
Jo Jo 

= c3( r \\Mu(t)\\dt)2 < c3~k( r \\u(t)\\V2dtf 
Jo Jo 

< c3~k s r \\u(t)\\i2dt. 
Jo 

Using this along with A5), A3) in (4.142) we obtain 

||U(s)||2 + A;1||^(0)||2; + 2fc2 [
S \\u(t)\\l2dt 

Jo 

<    2C3k s f \\u(t)\\l2dt + 2A0 [' ||u(t)||2^. 
Jo Jo 

This implies 

|Ks)||2 + (2fc2 - 2C3~ks) I' ||«(t)||^A < 2A0 f \\u(t)\\2dt. 
Jo Jo 

Hence for s < so = k2/C3k we have 

||u(S)||2 < 2A0 T ||«(t)||2dt. 
Jo 

By Gronwall's lemma, we thus find u(s) = 0 on [0, so) where so is independent of the solutions w, v. 
It follows that one must have u = 0 on [so, 2so), etc so that u = 0 on any finite interval [0, T]. 

4.3.6    Semigroup Formulation 

In this section we show that the weak solution of our problem 4.76-4.78 satisfies a variation of 
parameters type integral equation. Let us first formally derive this equation. Eq. 4.76 can be 
formally rewritten as 

z{t) = Az(t) + F(t) (4.143) 

where 
zi(t) \ = f w(t) \     _ r o     i 
z2(t) )-[ wt(t)  i' -Ai    -A2 

(4.144) 
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and 

F{t) = ( $(0 ) '   m = f{t) ~ N*9(^z1(t)). (4.145) 

The operator A generates a Co-semigroup S(t) on the space Z = V x H, where we can, without 
loss of generality, use the equivalent <T\ inner product on V. Moreover, the operator A can be 
extended to an operator A : Z —► W where W = y*,y = [domA*] with inner product ($, 9}y = 
((A — A*)$, (A - A*)^)z where A > Ao and A is the infinitesimal generator of a Co-semigroup S(t) 
on the space W. This semigroup S(t) is an extension of S(t) from Z to W. Moreover, Z* C W 
with ||\P||w < C||*||2- for ^ € Z*. This semigroup can be used to formally rewrite Eq. 4.143 in 
the form 

z(t) = S(t)z(0) + f S(t- T)F(T) dr. (4.146) 
Jo 

Theorem 4 In addition to the assumptions Al)-A9), All) used to prove existence of a weak solu- 
tion in Theorem 3, we also assume A7a) and A10). Then the weak solution w satisfies the integral 
equation 4-H6- 

Proof: First of all we notice that the statement 4.113 of Lemma 1 can be strengthened if 4.91 is 
satisfied. Namely, 

g{NwN) - h, in Cw([0,T},H) (4.147) 

or, in other words, 
g(AfwN(t)) -» h(t), weakly in H (4.148) 

uniformly with respect to t S [0, T]. This is certainly correct for a subsequence of {wN} (recall our 
convention at the beginning of Section 4.3.4). 

By the Arzela-Ascoli theorem, to prove (4.148) it suffices to show that the set {g(MwN)}™ is 
uniformly bounded and equicontinuous on [0,T] in the W-norm and recall that bounded sets in H 
are sequentially compact in the weak topology. We have 

\\g{MwN{t))\\ < Cl\\MwN(t)\\ + C2 (4.149) 

< dVkWw^i^Wv + C2< e-Wy/kCiC1'2 + C2 

where we have used (4.90), (4.86) and the main a priori estimate (4.105). To show equicontinuity 

check that the set \ —g{MwN) \        is bounded in L2([0,T],H).   Here — means the strong 
{dt ) N=1 dt 

W-derivative. We have 

''dt Yt9{XwN {t))\\h(\o,T],H) = (4.150) 

/   \\g'(ßfwN{t))Mw»(t)\\2dt< 
Jo 

rT 
<C? f \\Arw?(t)\\2dt< 

Jo 
 rT _   

< kC$ /    \\w?(t)\\l2 dt < kk^kCzC, 
Jo 

where we have used 4.87, 4.91, and 4.105. Note that in 4.150 we have also used the fact that 
(MwN)t(t) = Nw?(t) for all t G [0,T], where on the left the derivative is understood in the sense 
of distributions with values in H and on the right with values in V2- Thus (4.148) is established. 

Next we use the additional assumption in A7a) that A^(V) is dense in H. From this assumption 
and the statement 4.126 in Lemma 2 we can conclude that 

g{Nw{t)) = h(t),   fora.e. te [0,T], (4.151) 
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Comparing 4.151 with 4.148 we conclude that 

g{MwN) ^ g{Mw) in CW([0,T], W)- (4-152) 

Thus we can choose our subsequences and limit function w so that we have 

g{Mw{t)) e H for all t G [0,T\. (4.153) 

Recall that we have imposed the additional restriction (4.87) on Af. Hence we have 

N*g{Hw{t)) G V| for all * G [0, T] (4.154) 

and, moreover, 
M*g(Mw)eCw([0,T},V;). (4.155) 

Prom 4.155 we conclude that, in particular, 

M*g(Afw)€L2([0,T},V;). (4.156) 

From this last conclusion we can consider our original equation 4.76 as a linear equation with 
right side term 

$ = f-M*g{Mw) G X2([0,T], VJ). (4.157) 

Then the statement of the theorem follows from Theorem 4.3 in Banks et. al. 

4.3.7    An Explicit Example 

In this section we present an example of a system governed by a partial differential equation for 
which all the assumptions are satisfied. In particular, we consider an m-dimensional, nonlinear 
damped membrane with fixed boundary. 

Let Q C Rm be a bounded domain with Cx-smooth boundary T. We consider the problem 

wtt + KiA2tu + K2A
2wt + Ag(Aw) = / (4.158) 

w\r=o (4.159) 
dw 

to r = ° <4-16°) 
w(x,0) = <po(x) G Hlip),   wt(x,0) = <pi(x) G L2{Sl) (4.161) 

s = (xi,---,xTO)Gfi, t€ [0,T],(x,t)Gfix [0,T}=QT 

We assume that /(-,*) G H~2{ti) for almost all t G [0,T] and 

J    ll/(-.*)llir-»(n)d*<<»- (4-162) 

Assumption 1  M^e assume that 

G(0= / jWdr,   5(0=G'(0 (4.163) 
Jo 

satisfies 

1.  There exist positive constants Cj for j = 1,2,3 such that 

_1 
~2 

/or e > 0. 

(«l + .K2 - e)l£|2 - Ci < G(0 < C2|£|2 + C3 (4.164) 
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2. There are positive constants Cj, j = 1,2 such that 

\9(0\<C1\S\+C2. (4.165) 

3. We also assume that 

»'(0 > -*i- (4.166) 

Notice that in this problem 

V = V2 = tf0
2(fi) = jv- € H2(il) : V|r = ^     = o} 

and 

^1 = ^2 = A2,   Af=A,   Jfe = fc = l. 

Let us check that 4.166 implies the monotonicity condition 4.94. We have for ip,ip 6 L2{9) 

(9(f) ~ g(il>), f-rp)= I  [g((p) - gty)] (tfx) - J{x)) dx 
Jn 

ds-^g(s<p(x) + (1 - s)V(x) 
Jn [Jo 

= In [L dS 9'^{x) + (1 ~ s)V,(x)) 

(f(x) -ip(x))dx 

\(f(x) - tjj(x)\2 dx 

>-ki\\<p-iPfL2, 2(n)> 

and the result follows. All other conditions (Al)-All) are also satisfied. 
In concluding this section, we note that the motivating example on nonlinear elastomers also 

falls within the class of examples that can be treated with the theory developed in this section. Of 
course, the neo-Hookean nonlinearity g of (4.73) (which is only locally defined) must be appropriately 
extended to a map g : R1 -+ R1. Once this is properly done, the functions g:H^H,H^ L2(0, £), 

defined by g(ip)(x) = g(<p(x)) and G(ip) = /„ G(<p(x))dx = Re{G(ip),l) where G(£) = ft g(s)ds] 
G((f)(x) = G(<p(x)) will satisfy the necessary hypotheses for the theory of Sections 4.3.1-4.3.6. 

4.3.8    Concluding Remarks 

In the previous sections we have presented arguments of existence, uniqueness and regularity for 
solutions of abstract systems described by (4.76)-(4.78). 

These arguments are constructive in the sense that they also establish convergence of certain 
classes of finite element Galerkin approximations that are the foundation of computational methods. 

To be specific, suppose we have a family of approximation spaces 

nN = span{^,^,...,^},N = 1,2,..., 

where the basis elements {^f} satisfy the standard finite element condition: 

(Cl) For each N, HN C V and for each rp € V, we have 

IIV - PNtp\\v -» 0 as N -» oo 

where PN : H -> HN is the orthogonal projection of H onto HN. 

We can then define the Galerkin approximations in the standard manner: 
W"W = Efc=iCfcr(OV'fcr are chosen to satisfy (4.104) for each test function tpj = ^, j = 

1,2,...,N, with initial conditions 3 

wN(0)=PN<po,w>,(0) = PN<p1. 

We note that (Cl) immediately yields that ^(0) -> <p0 in V and w?(0) -M^ in ft for ip0 and 
Vi in V and H respectively. Then under the additional condition 
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(C2) For all N, HN C HN+\ 

we can prove that wN ~* w in C([0,T],H). The arguments follow almost immediately from those 
of Section 4.3.5 above. In both (4.117) and (4.122) we choose test functions $M(t) = i](t) = 

Efcli a-kiWk with the ak arbitrary C1^,^]) functions. We then have rj e VM for every M <N 
(we use the condition (C2) here only), so that (4.124) again holds for r) € VM, M < N. Then the 
remainder of the arguments of Section 4.3.5 remain unchanged and we thus conclude that beginning 
with any subsequence of the Galerkin sequence {wN}, we can obtain a further subsequence which 
converges to w, the unique solution of (4.76)-(4.78). Hence the original Galerkin sequence itself must 
converge in C([0,T], H) to w. 

The condition (Cl) is standard in finite element and spectral family approximation schemes. 
The condition (C2) is also readily satisfied in certain finite element and spectral approximations. 
For example, consider the one-dimensional elastomer rod with strong damping (so that V2 embeds 
compactly into ti = L2(0,g)) and let ipjf be the usual piecewise linear elements corresponding= to 
the discretizations of 0 < x < I with Ax = £/K. Define VK = span{ipf,..., V>£} and then choose 

HN = V2 in the Galerkin scheme described= above. It is readily seen that (Cl) and (C2) hold 
where V = H^(0,£). 
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4.4    An Experimentally Validated Damage Detection Theory 
in Smart Structures 

This work discusses a theoretical, numerical and experimental investigation of the use of smart 
structures, parameterized partial differential equations and Galerkin approximation techniques to 
detect and locate damage. Smart structures, as used here refer to structures with embedded and/or 
surface mounted piezoceramic patches which may be used to sense and actuate vibrations of the 
host structure. Unlike many competing methods, the approach presented here is independent of 
modal information from the structure. Rather, changes in damping, mass and stiffness properties of 
the structure are estimated using time histories of the input and vibration response of the structure, 
generated and measured by the piezoceramic patches internal to the structure. 

The premise of the effort proposed here is that damage to a structure will correspond in some 
way to changes, albeit small, in the structure's mass, damping and stiffness properties. Such damage 
might be due to fatigue, delaminations, cracks, or corrosion. However, in the study here all damage 
consists of holes in the structure which can be created in a systematic fashion allowing for a controlled 
study. Furthermore it is assumed that the structure of interest can be modeled by using a partial 
differential equation associated with basic structural elements (i.e., bars, beams, plates, membranes 
and shells). 

Most of the previous efforts in the substantial literature on vibration related damage detection 
are based on modal methods. The basis for such methods is that damage produces a decrease 
in dynamic stiffness El. This decrease in turn produces decreases in natural frequencies for an 
undamped simple beam (recall the eigenvalues are given by A ~ y/EI/pA where A is the cross 
sectional area of the beam and p is the mass density). This basic premise has produced a number 
of results using modal analysis, i.e., frequency measurement to perform diagnostics. While modal 
based methods may have certain advantages (e.g., they are simple if they do work), modal based 
methods possess a number of major disadvantages. First of all, some of the modal based method 
investigations provide a strong argument for including geometry of the damage in any diagnostic 
testing scheme, something which is not easily done in frequency based methods. Indeed, mode and 
frequency characterizations are not so simple in variable structure systems; there is ample evidence 
that one should not use modal methods based on uniform undamped simple beams or plates as 
is often done in the engineering literature in addressing damage assessment methodologies. Since 
material parameters are most properly considered as spatially dependent quantities with damage 
manifested by changes in geometry (and hence in the spatial dependence of these parameters), it is 
unlikely that any rigorous theoretical basis for modal based methods for variable material structures 
will emerge. But perhaps the most serious objection to modal based methods resides in the fact that 
modal based methods have been shown to be highly unreliable for estimation of variable material 
parameters such as damping in composite material structures. 

Adams et al. and Cawley and Adams provided insight into using vibration data for non- 
destructive evaluation of a structure's integrity. In 1978, Adams et al. analyzed one dimensional 
structures and showed that single point measurements coupled with a suitable model could be used 
to indicate both the location and magnitude of a defect. This claim is backed by experimental 
evidence. Their premise is that detailed models of damage mechanisms are of little value in de- 
tection, but rather noted that damage is usually accompanied by a local reduction in stiffness and 
increase in damping. They used receptance methods (defined as response displacement divided in- 
put magnitude at a harmonic steady state), and neglected damping, to model the structure. Local 
or distributed changes in stiffness produced changes in natural frequencies which effect each mode 
differently depending on the damage location. Later, Cawley and Adams extended these results to 
two and three dimensional structures via finite element models. They also performed a sensitivity 
analysis and showed that the ratio of frequency changes in different modes is only a function of 
damage location and not the magnitude of the damage. 

Sato investigated the free vibration of beams with abrupt changes of cross section. Sato examines 
vibrating beams with grooves.   While this work did not specifically address damage detection, it 
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does provide strong theoretical and experimental evidence that simple beam theory (i.e. a constant 
parameter beam equation) may lead to incorrect results as the ratio of the groove width to beam 
thickness increases. Sato's work uses a combination of beam theory modified by careful finite element 
analysis near the groove, held together by a transfer matrix method. 

Cawley and Ray examined natural frequency changes in a beam due to cracks with changes 
caused by machined slots in an attempt to correlate theoretical damage detection results based on 
machined slots with the reality of actual cracks. Their results show conclusively that the width 
of the machined slots must be accounted for, adding evidence to the mounting case that geometry 
must be included in modeling and testing for damage. As in Cawley's earlier work, the results are 
theoretically supported by sound experiments. 

More recently, Armon et al. modeled transverse cracks in beams as a simple reduction in beam 
stiffness. This in turn produces a drop in natural frequency which can then be measured and hence 
detected. As others before them, they used an undamped uniform beam and developed sensitivity 
formulas for frequency shifts as a function of small changes in global beam stiffness. They also 
assume that the mode shapes remain unchanged by the small change in stiffness. They develop a 
rank-ordering of fractional frequency shifts which are insensitive to the damage magnitude. 

The results of the previous literature in damage detection provide evidence that something is 
gained by including the effects of geometry and hence modeling the local changes in modulus (stiff- 
ness). This then raises significant questions as to the validity of using traditional modal analysis 
(i.e., measurements of natural frequencies, assuming a uniform model) as the foundation of a damage 
detection methodology. 

Can Modal Analysis Be Used To Detect Damage? 

As one might expect from our comments in the previous section, the use of measured modal param- 
eters to determine the existence of, extent of, and location of damage has been highly debated in 
the last few years. Conferences on modal analysis and on smart materials have produced scores of 
papers on the topic. Indeed the conference literature on using modal methods is extensive. In the 
journal literature, several manuscripts have demonstrated the feasibility of using measured changes 
in vibration characteristics to detect damage (in composite structures) by measuring vibration re- 
sponse both before and after a specific composite structure is damaged. As mentioned above these 
particular methods do not consider damping effects or mode shape changes. 

Later, Stubbs, Stubbs and Osegueda and Saunders et al. presented a serious attempt to de- 
tect, locate and quantify damage in composite structures from measured modal data (i.e., damping 
ratios, natural frequencies and mode shapes). Stubbs' work is based on sensitivity equations for 
mass, damping and stiffness matrices as well as on the internal state variable constitutive theory of 
damage in composites. The approach makes heavy use of a finite element model of the structure 
which must produce natural frequencies in strong agreement with the measured natural frequencies 
of the undamaged structure. The work of Stubbs et al. focuses on changes in stiffness and damp- 
ing (proportional) only but applied to both isotropic and anisotropic material. The experimental 
component of this work examines simple cantilevered beam specimens. Stubbs' sensitivity formula 
depends on knowing the mode shape transformation. In particular, modes of both the damaged 
(measured) and undamaged (theoretical) system are required. Recently, Tomlinson showed that the 
mode shapes of a damaged system and that of an undamaged system are nearly the same. In fact, 
Stubbs shows that they are exactly the same if the damage is uniform. Unfortunately, Stubbs was 
unable to measure mode shapes during the experimental verification phase of their work even though 
the damage was clearly nonuniform and hence this issue remains unresolved. 

Experimentally, Stubbs measured frequency shifts of the order of 1 to 2% for structure damage 
by loading them from 60% up to 75% of their ultimate strength. Thus it seems that the issue of 
using modal parameters to determine the location of a quantitative value of damage is also not 
settled by these results. 

One of the major concerns regarding using modal analysis to detect damage is that damage 
is a local phenomena and modal information is a reflection of the global system properties.   To 
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further investigate this criticism, a simple single degree of freedom system is examined followed by 
an examination of a beam with local mass changes. Damping is not considered in this example. 
However, note that changes in global damping ratios of a material can be related to significant local 
damage by simply examining a bolted connection. For instance two struts held together with a joint 
exhibit damping ratios which are dominated by the torque or tightness of the joint. In space frame 
structures the damping is thought to come largely from joints and connections. 

The frequency of a single spring mass model of a structure is related to its physical stiffness k 
and mass m by u2 = k/m. Using a simple derivative we see that the change in frequency with 
respect to stiffness is 

dbj _      1      _ w 

dk ~ 2^/kZ ~ 2fc' 
and the change in frequency with respect to mass is 

dw 1   [k U) 

dm 2 V m3 1m 

These derivatives represent the sensitivity of the natural frequency to changes in stiffness and mass 
respectively. In each case, the sensitivity of w decreases inversely as the value of the stiffness (or 
mass) increases. For a two meter long airplane wing, the stiffness is about 116 N/m so that changes 
in frequency near 100 Hz corresponding to 1% changes in stiffness would be expected to be of the 
order of .4 Hz, or a fraction of a Hertz, while similar changes measured at 1000 Hz would be of the 
order of 4 Hz, etc. Measurements of frequencies with modern analyzers often have difficulty detecting 
a 0.4 Hz change. It is also known that small changes in unmodeled parameters such as humidity 
and temperature can cause such small changes in frequency measurement taken on different days. 

Next consider the possibility of detecting a mass change by using frequency information. Again 
using the single degree of freedom frequency equation, a one percent change in mass of a 10 Hz 
system will produce a 0.05 Hz change in frequency or a 0.5 Hz change at 100 Hz. Thus, for single 
degree of freedom system 1% change in mass requires that the measurement scheme be able to 
discriminate frequencies to within 0.5%. This conclusion does not address simultaneous changes in 
the system mass and stiffness. 

Next consider damage as characterized by a finite element eigenvalue problem. Here damage is 
simulated by local changes in either mass or stiffness matrix by perturbing just one element in the 
model. For simple structural models such as a beam, the equations of motion can be used directly 
without use of a finite element model. The results reported in Weissenburger, examines analytical 
solutions of the eigenvalue problem for local changes in stiffness and mass at various points on a 
beam. While Weissenburger's interest was not in diagnostics, his results make a significant and 
systematic comment on using frequency shifts to detect changes in physical properties. For a mass 
placed about ± out from one end along the length of a pinned-pinned beam, the nondimensional 
frequency shifts (denoted ß\ where u>„ = (%y/EI/pA) are given by Table 4.3. The last two 

undamaged beam      10%        50% 

ßlh2 l 0.9397 0.7715 

ßlh2 4 3.7130 3.2218 

ßlh2 9 8.9339 8.8292 

Table 4.3: Nondimensional frequency shifts . 

columns are the ratio of "added mass" to total beam mass. This result illustrates that small local 
changes in the mass of a beam can make significant changes in the frequency. For instance, the first 
frequency changes by 6% for a modification in mass of 10% and 23% for a modification of 50%. 
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While these numbers are more encouraging than the changes predicted by looking at the single 
degree of freedom model, a 10% change in mass represents relatively large damage. Note, as in the 
single degree of freedom case the percent change in frequency is about \ of the change in a physical 
parameter. The conclusion here is based entirely on an analytical solution and does not depend on a 
choice of grids and nodes as does the FEM approach. The same study shows clearly that the mode 
shapes do not change much as local mass is modified. 

Next Weissenburger considered the same analytical technique applied to changes in local stiffness 
of a pinned-pinned beam. As Table 4.4 reveals, the results found for using frequency measurements 
to determine changes are even more interesting.     The 3rd mode remains unaffected because the local 

undamaged beam      10%       1.45% 

ßlh2 l 2.2995 2.7887 

ftl* 4 5.0996 9 

ßlh2 9 9 9 

Table 4.4: Frequency changes as a function of local stiffness modification . 

stiffness change is made at the third modes' first node. The 1.45% damage case is special because 
it causes the characteristic equation to have a double root. This case illustrates that very small 
changes in local stiffness can have extremely large effects on frequency if the changes in stiffness 
occur at certain primary locations on the structure. While these results are obtained by adding 
stiffness and mass, the same effects should be obtained by subtracting stiffness and mass at local 
points. Weissenburger's study combined with Sato's result indicates a possible source of why the 
literature contains conflicting statements on the use of frequency measurements to predict damage. 
An explanation for the controversy may be as simple as it depends on where the damage is located 
i.e., it depends on the geometry of the damage. For some types of damage modal analysis may be 
appropriate while for other configurations it may not be appropriate. This point is also made by 
Adams et al. 

The results we propose here specifically avoid using modal analysis methods because the results 
based on modal methods seem controversial and their success depends on the unknown relationship 
between damage location and measurement location. Rather we use direct time domain estimation 
of spatially varying physical parameters of a structure to determine the structures' health. 

In light of the above comments, a question of rather great interest then is: can one develop 
analytically sound, non-modal based self-excitation/self-sensing methods for detection and charac- 
terization (geometrical and quantitative) of damage in smart material structures? Here we address 
this question in the context of embedded piezoceramic structures. 

For an embedded piezoceramics smart material damage detection and characterization method- 
ology, there are several distinct requirements. These include: 

(a) One must be able to estimate reliably (repeatable across experiments) the variable structure 
material parameters of a piezoceramic loaded structure. This must be done using piezo actua- 
tion and sensing with accuracy comparable to that achievable with standard actuating (impulse 
hammers, solenoidal actuators) and sensing (accelerometers, strain gauges, laser vibrometers) 
devices in non-smart material testing schemes. 

(b) One must be able to use the actuation and sensing properties of the piezoceramics to excite 
the structure and analyze the response (in a single experiment) for a reliable methodology that 
is the basis of self-excitation/self-sensing. 

(c) One must be able to detect and characterize damage via vibration self-excitation/ 
self-sensing that relies only on the input/output signals for the piezoceramics. 
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The first two of these requirements have been studied analytically, numerically, and experimen- 
tally by Banks et al. In this section we address the last requirement in the context of a piezoceramic 
loaded beam. This particular structure is sufficiently representative to make a compelling case for 
feasibility of the ideas we propose. As noted above, it is essential to model the micro structure 
related to the local geometry and elastic characteristics. In Section 4.4.1 below, the partial dif- 
ferential equations describing the dynamics of a beam with surface bonded piezoceramic patches 
is outlined. The damage detection problem is formulated as an optimization problem and is de- 
scribed in Section 4.4.2. The experimental verification with regard to requirement (c) is detailed in 
Section 4.4.3. 

4.4.1    Model for Damaged Structures 

It is clear that having a model including the geometry and material parameters of the structures is 
important. We devote this section to the modeling of a structure of interest to us. 

The test structure is a cantilever beam with two piezoceramic patches attached on the opposite 
side of the beam. It should be noted that the underlying mathematical theory is neither restricted 
to two patches configuration nor, as shall become clear later, restricted to beams. This homogeneous 
material beam, which we shall assume satisfies the Euler-Bernoulli hypothesis for displacements and 
the Kelvin-Voigt hypothesis (damping proportional to strain rate), is fixed at x = 0, free at x = (.. 
Two piezoceramic patches are bonded to the beam (one on each side) in the region xi < x < x2. 
We denote the length by £, width w, thickness t, mass density p, Young's modulus E and damping 
coefficient cD, and as usual, A represents the cross sectional area and I is the moment of inertia of 
the cross sectional area. The different materials will be indicated by subscripts: b for beam and p 
for piezoceramic. For simplicity here, we ignore the bonding layer material properties and geometry 
although this is readily included if so desired. 

For such a beam, subject only to forces and moments generated by actuating the patches, force 
and moment balancing lead to the dynamic system of equations 

for the axial displacement u = u(t,x) and the transverse displacement y - y(t,x). Here Nx and Mx 

are the internal force and moment resultants given by 

_r       _ ., . du A, x d2u 
Nx = EA{x)— + cDA(x)- 

dx      "   v 'dxdt 

Mx = EI(x)p±+cDI(x) d3y 

(4.168) 

>dx2       -""^'dafidt' 
where 

EA(x) = Ebtbwb + 2EptpwPXp(x),    cDA{x) = cDbtbwb + 2cDptpwpxP(x), (4.169) 

12 12 
EI{x) = — tlwbEb + -awpEpXp(x),    cDI(x) = —t3

bwbcDb + -awpcDpXp(x),  (4.170) 

with Xvix) the characteristic function that is 1 for x\ < x < x2, and zero elsewhere and patch 
constant a = {\ tb + tp)3 - (| tb)

3. The linear mass density p is given by 

p(x) = pbtbwb + 2pptpwPxP(x). (4.171) 

The indicator function 5i,2 has form 

1 x < (xi + x2)/2 
Si,2 = {   0 x = (xi + x2)/2 . 

-1 x > (xi + x2)/2 
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The external forces and moments [Nx]p and [Mx]p depend on the voltages supplied to each of 
the two patches. If the voltages are denoted by v\ and v2, respectively, these forces and moments 
are given by 

[Nx}p = ICASU2(x)Xp(x)[v1(t) + v2(t)] 
(4.172) 

[Mx}P = -K.BXp{x)[v1{t)-v2{t)}, 

where K,A, KB are constants depending on the piezoceramic material properties. If the patches are 
excited in-phase, for example, with vi(t) = v2{t) = v(t), we find 

[Nx}p = 2ICASh2(x)Xp{x)v(t) 

[Mx\p = 0, 

resulting in axial motion only. If the patches are excited out-of-phase, with v\{t) = -v2(t) = v(t), 
we have pure bending or transverse motion since 

[Nx]p = 0, 

[Mx]p = -2KBXp(x)v(t). 

Next we consider the beam with damages. Since the beam model is based on the Euler-Bernoulli 
theory, we assume that the center of the damage coincides with the neutral axis (the axis parallel 
to the longest edges) of the beam and the damage is symmetric with respect to this center line. 
Furthermore, we assume that the damage located between xdl and Xd2 is characterized by shape 
functions. The shape functions represent a change in the geometry of the beam, resulting in the 
thickness and the width of the beam no longer being uniform. With damage, the coefficients in the 
equations 4.167 and 4.168 become 

EA(x) = Ebtbwb + 2EptpwpXp(x) - EbSA(x)Xd(x) 

cDA(x) = cDbtbwb + 2cDptpwpXp(x) - cDbSA(x)Xd(x) 

EI{x) = —4wbEb + -awpEpXp{x) - EbSj(x)Xd(x) (4.173) 

1 2 
cDI(x) = —tbwbcDb + -awpcDpXp(x) - cDbSI{x)Xd(x) 

p{x) = pbtbwb + 2pptpwpXp(x) - pbSA(x)Xd(x) 

where the characteristic function Xd(x) is 1 for xdl < x < xd2, and zero elsewhere. The shape 
function SA(x) is the missing area of the cross section due to the damage, while the function 
12*6^6 ~ Si(x) is the inertia of the cross section of the beam containing damages. 

Coupled to the system 4.167-4.168 and 4.172-4.173 are appropriate boundary conditions 

u(t, 0) = 0, 

y(t,o) 

and initial conditions 

o, £<«■<>-° (4.174) 

gft«-* Mx(t,£) = —Mx(t,e) = 0, (4.175) 

U(0,X) =T){x), 
Ölt. 
— (0,x)=7(x), (4.176) 

y(0,x) = {(x), |>,x) = #r). (4.177) 
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For a beam containing damages and a pair of identical patches which are bonded symmetrically 
about the middle surface, the differential equations 4.167-4.168 and 4.172-4.173, under the first 
order Euler-Bernoulli assumptions, describe vibrations in the axial and transverse directions that 
are uncoupled. If one has only a single patch bonded to the beam, or if the patches are not identical, 
then one obtains a set of equations for longitudinal and transverse vibrations that are coupled (which 
is not surprising since the structure consisting of beam plus patch is no longer symmetric). 

Without loss of generality, let us consider the beam described above under out-of-phase excita- 
tion, resulting in pure bending (transverse vibrations). Using the abbreviated notation D = ^, we 
then have the model 

pytt + D2{EID2y + cDID2yt) + 1Vt = -2/CBD2
Xp(x)v(t) (4.178) 

coupled with the boundary and initial conditions of 4.175, 4.177. In addition to Kelvin-Voigt damp- 
ing, the equation 4.178 also incorporates some viscous (air) damping 7j/t. The coefficients p, El 
and cpl are discontinuous (see 4.173) while the coefficient involving the input voltages is given by 

D2
Xp{x) = D2{H{x - xi) - H(x - x2)} = D6(x - Xl) - D6(x - x2) (4.179) 

where H is the Heaviside function and D6 is the "derivative" of the Dirac function with mass at 
x = 0. This strong form of the equation 4.178 involves irregularities which can (and have) led to 
computational difficulties for estimation and control efforts found in the literature. Retention of 
such irregular terms as the discontinuous coefficients in 4.178 and the impulse derivatives in 4.179 is 
of great importance (indeed, essential) when using such models with experimental data from actual 
structures; this has been shown in Banks et al. 

For the same configuration, when the beam is under deformation (bending), the generated charges 
in terms of voltage across the piezoelectric sensors has the expression. 

K' I     Qxiy
x(t>x)dx = £s{g^yx(t,x2) - —yx(t,xi)^J (4.180) 

where )CS is a sensor constant which is also a constant dependent on material piezoelectric properties 
and geometry. 

Instead of seeking solutions to the partial differential equations as formulated in strong form 
4.178-4.179 coupled with the boundary conditions 4.175 and 4.177, we seek the solutions to varia- 
tional formulation 

{pVttt + (EID2y + cDID2yt)D
2(j) + jyt<t>} dx 

(4.181) 
-2K.BD2<t>dx) v{t) 

/Xl / 

for some (j> in an appropriate class of "test" functions. The well posedness and computational 
techniques will be based on this variational form of the damped second order system. 

Applying standard functional analysis techniques, one could establish existence of a unique so- 
lution with y{t,-) e H2(0,£) = {V> e L2(0,e)\^,tp',ip" e £2M,V(0) = tf'(0) = 0} satisfying 
4.181 for all test functions <j> in the Hubert space Hl(0,£). In this sense the initial boundary value 
problem 4.177,4.178 with the boundary conditions 4.175 is well-posed under very mild smoothness 
assumptions on EI(x) > 0, cDI(x) > 0 and p(x) > 0. The well-posedness result can be established 
for other types of internal damping such as spatial hysteresis damping which represents one form of 
energy dissipation mechanism in certain composite materials, and structural (square-root) damping 
which has been suggested in others. Detailed statements and the nontrivial arguments underlying 
these mathematical results can be found in Banks et al. 

4.4.2    Damage Detection Technique 

Damage detection is carried out by determining the shape functions SA and 5/ in 4.181 using 
observations of the system output response to excitations {vi} to the patches.   This estimation 
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problem is formulated as an enhanced least squares fit to observations, i.e., we seek q e Q which 
minimizes 

At,. 

ÄQ) =Y,CiJ(q\Vi) (4.182) 
i=l 

where J(q;Vi) is in form of 

N 

J(q;vi) = ^2  Ks(—yx(tk,x2;q,Vi) - —yx(tk,xi;q,Vi)) - zk) (4.183) 

for the piezoelectric elements being located on the beam between xi and x2. In the cost function 
{zk} are measured voltages across the piezoelectric elements due to bending, and {y(tk, •; q, Vi)} are 
the parameter dependent weak solutions of 4.181 with zero initial conditions evaluated at each time 
tk, k = 1,2,..., N for a given input Vi(t). In 4.183, | • | is an appropriately chosen Euclidian norm. 
The set Q is some admissible parameter set which arises in parameterization of the desired shape 
functions. 

In 4.182, the coefficients {CJ} are chosen so that amplitude of the weighted response 
{ci y(t, x; q, Vi)}i=\ are in the same order. Furthermore, the system is excited in a manner so that the 
dominant mode in the response data corresponding to the input Vi(t) is different from one excited 
by Vj(t) for j ^ i. 

The standard least squares cost function 4.183 alone is not adequate for unique solution of 
the damage detection problem. We illustrate this point with the following example in which the 
simulated piezoceramic responses corresponding to different damage locations are compared. One 
response data is generated on a beam with a centered circular hole at 2.413 cm away from the 
clamped end. The second is generated with the hole at 14.478 cm. In both cases, identical broad 
band input signals are applied. Studying the responses at different damage locations, it is obvious 
that vibration data and location of damages do not have a one to one relationship. Hence there may 
exist more than one set of damage parameters which yield the same value of cost function 4.183. 

If one examines closely the very beginning of the response data, the second mode responses do 
not match even though the first mode responses match quite well. This difference could be observed 
more clearly if only the second mode were excited. When a bandwidth signal concentrated on the 
second mode is applied, the responses are quite different as the data clearly demonstrates. 

This nonuniqueness was observed implicitly by Armon et al. The rank-ordering method in the 
article is based on the fact that the amount of phase shift in each mode differs from one type 
of damage (characterized by location and dimensions) to another, and the amount of shifts yield 
different order in response to different damages. 

The above remarks raise the question as to whether it is possible to use one response data in 
which multiple modes are excited. Since the amount of change in the response due to the damage is 
very small, recorded data in a short time period would not provide enough information in the sense 
of displaying the difference caused by damages. On the other hand, the higher vibrational modes 
are damped out in the response over a longer time period. The example above demonstrated what 
could happen in damage detection by using only one vibration response data. This motivates the 
use of the cost functional 4.182. The basic idea underlying this enhanced cost function is to use time 
responses over a long period while at the same time taking into account the information in several 
modes so that the cost function is sensitive to changes in any mode. 

In the enhanced cost function, a time domain cost function is adopted. As was pointed out in the 
Introduction, frequency data (such as embodied in transfer functions) does not provide adequate 
information to detect damage. In two experimental data sets, one recorded from an undamaged 
beam and one from a damaged beam, with limited resolution of data acquisition equipment, the 
frequency response does not provide damage knowledge, while the time response data indicates the 
change in the structure. A detailed description of the experiment is presented in Section 4.4.3. 

The minimization in the above setting involves an infinite dimensional state space and with- 
out further parameterization of the shape functions, an infinite dimensional (functions) admissible 
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parameter space. We consider Galerkin type approximation in the context of the variational formu- 
lation of Section 4.4.1. The beam displacement y{t,x) is approximated by 

N 

yN(t,x) = Y/wi(t)J>?(x) (4.184) 
i=l 

in an appropriate Nth-order finite dimensional space. The basis elements {^f} are chosen to be in 
the same space as those test functions in 4.181 with modifications such that the boundary conditions 
are satisfied. The generalized Fourier coefficients {wi(t)} represent the state relative to this basis. 

Replacing y(t,x) and <p in the variational formulation 4.181 by 4.184 and {^f}-^ respec- 
tively, 4.181 yields an N vector ordinary differential equation system for the N vectors w{t) = 
[wi(t),w2(t),- ■ ■ ,wN(t)]T: 

MN w(t) + CN w(t) + KN w(t) = FN v(t) (4.185) 

The usual Galerkin form coefficient matrices are derived by integrating each term in 4.181: 

lMN^J = l  P{x)^{x)^{x)dx 

The dimension and location of the damage are unknown and must be determined. The functions 
SA{X) and 5/(x) which characterize the damage are elements to be chosen from an infinite class of 
functions. Rather than attempting to reconstruct SA(x) and S/(x), we search for the projections 
of SA(x) and S/(x) on the linear span of finite dimensional sets {$i}£^ and {^j}fjx respectively. 
Thus we parameterize SA and Si by 

S
A{X) = Ylai $*(x)        0<xdl<x<xd2<£ (4.186) 

i=l 
Mi 

Si(x) = ^2 ßj *J(I)        0 < xdl < x < xd2 < L (4.187) 

Then a family of approximating estimation problems with finite dimensional state spaces and 
parameters can be formulated by seeking a vector parameter 

q    = (ai,a2,---,aMA,ßi,ß2,---,ßM,,xd1,xd2) 

which minimizes 
Mv 

JN(qM) = '£ciJN(qM;vi) (4.188) 
i=l 

where JN(qM;Vi) is given by 4.183 with y(t,x) replaced by yN(t,x), and the dimension of the 
parameter space is M = MA + Mi + 2. The coefficients {wi(t)} in 4.184 are the solutions to 4.185. 

Based on our previous computational experiences in similar estimation problems, we chose cubic 
splines for the basis of our approximation scheme. The finite state space is defined as the span of 

{Mill1 witn {M being a standard cubic B-spline basis set with the elements modified to satisfy 
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the essential (or geometric) boundary conditions 6^(0) = Db{{0) = 0. That is, if {bi}?^ are the 

standard cubic B-splines, then 61 = b0 - 2bx - 26_i and bt = hi for i - 2, ■ ■ •, N(= N + 1). For the 
parameter space linear splines are selected as the basis elements $, tyj in 4.186,4.187. 

Solving the approximation problems, we obtain a sequence of estimates {qN'M}. The sequence 
admits a convergent subsequence which converges to some q € Q under the assumptions that Q is 
a compact set and parameter functions SA{x) and Sj(x) are bounded above. Furthermore the limit 
parameter q is a solution to the original infinite dimensional optimization problem. The relevant 
parameter estimate convergence and continuous dependence with respect to the observations results 
can be found in Banks el at. 

4.4.3    Experimental and Numerical Results 

To demonstrate the capability of damage detection with the algorithm outlined in the previous 
section, six different experiments were carried out. Each of them has a distinct damage location and 
size which allows us to conduct a sensitivity study. The detailed experimental procedure is described 
in the following section and damage detection results are reported afterwards. 

Test specimens and procedures 

The test articles for our non-destructive damage detection studies are cantilever aluminum beams 
which are 48.26 cm long, 2.032 cm wide and 0.15875 cm thick. One pair of piezoceramics is surface 
bonded opposite one other and they are electrically coupled to create one sensor/actuator. The 
piezoceramics have the following geometric dimension: the length is 6.35 cm, the width is 2.032 cm 
and the thickness is 0.0254 cm. An accelerometer is also affixed to each beam near the midspan (this 
can be used to corroborate our finding using the accumulated strain data e.g. 4.180. 

We focused on vibration tests in which a maximum of the first three vibrational modes would be 
excited simultaneously. Since the Euler-Bernoulli theory with Kelvin-Voigt damping was employed, 
our beam model is inadequate for use in analyzing vibration data containing high frequencies. For 
the chosen beam dimension and material, the first three natural modes are under 100 Hz and the 
Euler-Bernoulli model is appropriate. 

The piezoceramic pair located at 5.08 cm from the clamped end is used as both a sensor and 
actuator for the damage detection experiments. A switching mechanism allows the ceramic to be 
used in this manner. The switch is engaged by applying 12 VDC during the excitation period and 
it is disengaged afterward, thus allowing the piezoceramic to be used as a sensor. When used as an 
actuator, the ceramic is connected in series to an amplifier (xlO) with a voltage range of ±50 V. 
When used as a sensor, the piezoceramic is connected in series to a high impedance low-pass filter. 
The device has a 10 M.Ü impedance and a corner frequency of 10,000 Hz, i.e. any frequencies higher 
than 10,000 Hz are cut off to avoid aliasing. These parameters are chosen such that the output 
voltage of the ceramic is proportional to strain over the frequency range of interest (between 1 Hz 
and 100 Hz). 

If small frequency changes are to be measured reliably, it is essential to have the same experimen- 
tal conditions such as input and boundary clamp for both the undamaged and damaged structures. 
In the vibration tests, an impulse hammer is commonly used to excite multiple modes. The disad- 
vantage in using an impulse hammer is the associated poor repeatability of input. Moreover, it is 
difficult to simulate the resulting input force accurately. For the same reason, a random force input 
is also not suitable. To have repeatable input with frequency content over a desired bandwidth, a 
Schroeder-phased signal is adopted. The excitation voltage to the piezoceramic patches is generated 
by a DSpace computer where MATLAB Simulab Toolbox is utilized for implementing the Schroeder- 
phased signal. Each signal contains 1024 points and excites the beam for 4 seconds. The frequency 
content of each signal is chosen to excite certain modes of the beam. Signal 1 is broadband; signals 
2 and 3 are narrowband (see Table 4.5). Schroeder-phased inputs exhibit a flat power spectrum over 
the specified frequency range, i.e. the power in the input signal is equally distributed over the range. 
This characteristic permits very repeatable input time histories for all of the cases studied. 
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Frequency Range (Hz) 

0-100    0-20      20-50 

Signal 1 x           - 

Signal 2 X 

Signal 3 X 

Table 4.5: Frequency content of the Schroeder-phased inputs. 

The data acquisition system is a Fourier analyzer, Tektronix Analyzer 2600, with a PC (IBM 
AT) connected to it to display and record the data. The sampling rate of the analyzer is set at 
512 Hz, and a total of 4096 data points (8 seconds) are recorded for each vibration response. The 
analyzer is set to start recording at time 3.6 seconds. Hence 0.4 seconds of the forced vibration is 
recorded since the excitation lasts for 4 seconds. The rest of the data contains free decay vibration 
information. 

Two separate series of experiments are performed. The location of the damage differs for each 
series. An accelerometer was located at 25.4 cm in both experiments for monitoring the vibration 
and double checking the data collected from piezoceramic patches. To conduct the studies on the 
sensitivity of the method to the distances between the damage, the clamped end, and the sensor 
location, one defect is introduced near the clamped end and one near midspan. Table 4.6 lists the 
damage type and location for each experiment. All damage geometries are symmetric to the neutral 
axis of the beams. 

Exp. # 

Damage Cases 

b c 

No damage    DT1-1     DT2-1     DT3-1 

No damage    DT1-9    DT2-9    DT3-9 
DT#-* refers to damage type (#) and location(*(inch)). 

Table 4.6: Damage types and locations for the two experiments. 

The procedure for each of the two series of experiments is identical. First, the undamaged 
beam is tested by exciting it with the Schroeder-phased inputs and measuring the response of the 
piezoceramics and the accelerometer. Responses are measured separately for each excitation signal. 
After the undamaged beam is tested, the beam is damaged by drilling a hole (type 1) through the 
structure at a specified location. After testing, the beam is again drilled to produce a larger hole 
(type 2). Again, after testing this beam is further drilled to produce damage type 3. The holes are 
drilled without removing the beam from the clamp. This eliminates variation in the response due 
to changes in the boundary condition. Hence, each series of experiments is carried out on this same 
beam with the level of damage varying from no damage to the most severe damage, type 3. The 
excitation pattern is repeated for each damage case. 

Identification results 

For computations the dimension of the approximation space N was set to 14 since the eigenvalues of 
the approximate finite dimensional system became stable at N > 14 in the sense that the eigenvalues 
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do not change significantly as N increases beyond 14. A comparison with the selection of N = 10 
in Banks et al. where approximation was done for an undamaged beam reveals that more finite 
elements are required to capture the small changes in the structure due to the damage than are 
needed to study the undamaged beam. 

As might be expected from our earlier discussions, we readily observed in the experimental data 
that the frequency information is not sufficient to use as damage detection information. In Table 4.7, 
we list the frequency change in percentage for beams with different damage type and location versus 
undamaged beam. Note that in each case the change in frequency was at most 2.22%. 

Undamaged DTI 

Damaged Cases 

DT2 DT3 

Mode 

1 

2 

f(Hz) 

6.0000 

33.8667 

f (Hz)        Af/f (%) 

6.0000           0 

33.8667          0 

f (Hz)        Af/f (%) 

5.8667         2.22 

33.6000        0.79 

f (Hz)        Af/f (%) 

5.8667         2.22 

33.2000        1.97 

(i) Experiment 1 

Undamaged DTI 

Damaged Cases 

DT2 DT3 

Mode 

1 

2 

f(Hz) 

6.1333 

34.4000 

f (Hz)       Af/f (%) 

6.1333           0 

34.4000          0 

f (Hz)       Af/f (%) 

6.1333            0 

34.2667        0.39 

f (Hz)       Af/f (%) 

6.1333           0 

34.0000        1.16 

(ii) Experiment 2 

Table 4.7: Frequency shift for 48.26 x 2.032 x 0.1651cm3 beams with holes at (i) 2.54 cm and (ii) 
22.86 cm from clamp. 

The piezoceramic parameters (KB, Ep, pp), undamaged beam parameters (Eb, pb) and damping 
parameters are estimated first from data on the undamaged beam vibrations. The results are then 
employed as fixed values in the damage detection. 

To be consistent with the formulation for an Euler-Bernoulli beam, the geometry of the damage 
is assumed to be symmetric about the neutral axis of the beam. And for the same reason, we did not 
attempt to identify the shape of the damage since we use a 1-D equation to describe a 3-D structure, 
and many different 3-D shapes could be represented by a 1-D function (the level of nonuniqueness 
would be too high in such an endeavor). Instead, the possibility of using a fixed damage shape in 
the mathematical model is investigated. A reasonable shape would be a circular function 

S(x) = 2 y/r* - (x - xc)2, (4.189) 

in which r is the radius, xc is the center of the circle, and 2 in the equation is due to the symmetry 
property. In this case, the shape functions SA(x) and Sj(x) become 

SA(x)=tbS(x) 

Si(x) = ±1?bS(x). 
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To have a good initial guess for the shape function parameters in searching for the optimal size 
and location of the hole, a series of simulated responses was computed for different sizes and locations. 
The parameter sets (r,xc)'s which yield smaller residual (comparing the numerical solutions with 
the experimental data) among all the integration runs were selected as initial guesses. 

An IMSL routine of the Levenberg-Marquardt algorithm with a finite difference Jacobian al- 
gorithm (ZXSSQ in IMSL9) is used to solve the approximating finite dimensional least squares 
minimization problems. 

A summary of the estimated parameters for the undamaged beam is given in Table 4.8. The 
data fit result for Beam II is not presented here since it is similar to one for Beam I. 

A summary of damage detection results is listed in Table 4.9. The radius for damage case d is an 
equivalent radius, i.e. the removed area of a circle with the radius is the same as the actual removed 
area due to three holes. 

E 

(N-m2) 

P 

(kg/m3) 

CD 

(N-m2-s) 

7 (N-m2-s) 

given Beam I Beam II 

7.3000 x 1010      7.3413 x 1010      6.9709 x 1010 

6.3000 x 1010      7.1510 x 1010      6.8285 x 1010 

2.7659 x 103 

7.6000 x 103 

3.0010 x 103 

9.1713 x 103 

2.7659 x 103 

8.9869 x 103 

1.3391 x 106 

1.2188 x 106 

1.0521 xlO6 

1.2188xl06 

0.95648 x 10-2    1.1717 x 10 -2 

Table 4.8: Given and estimated structural parameters for undamaged beam I k II. 

Damage Damage Cases 

Center 

& Radius 

b c d 

Beam Actual Est. Actual Est. Actual Est. 

I xc (cm) 2.5400 2.8217 2.5400 2.7798 2.5400 2.5943 

f (cm) 0.1588 0.2303 0.3175 0.4420 0.3550 0.6745 

II xc (cm) 22.8659 23.8167 22.8659 24.1751 22.8659 24.2546 

f (cm) 0.1588 0.4764 0.3175 0.6350 0.3550 0.8263 

Discussion 

Table 4.9: Given and estimated damage for Beam I & II 

We first point out that the parameter identification results of Table 4.8 for the undamaged beams 
demonstrate again the consistency of our method for structures without damage.   Two sets of 
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estimated structural parameters obtained by using response data recorded from two identically 
made beams are extremely close in the values. This difference is caused in part by experimental 
limitations, e.g. it is very difficult to obtain consistent clamping in several experiments. To partially 
alleviate these limitations, the optimization procedure yields different stiffness and mass density 
parameters for the two experiments. As one might expect, the ratio of stiffness to mass density 
for Beam I is lower than the one for Beam II since the damped natural frequencies for Beam I are 
smaller than those for Beam II. 

Good agreement is obtained between the estimated damage location and the actual ones. The 
parameter estimation method is sensitive to small changes due to the damage - the smallest hole is 
3.175 mm in diameter which is only 0.08% damage (ratio of removed mass to undamaged beam mass). 
However, the size of the damages are all over estimated. We suspect that beams' characteristics 
were slightly changed during the drilling process in a manner in which the change was not modeled 
in our equations (e.g., changes in mass density around the holes due to shearing and stress, etc.). 
Simulations of the numerical solutions with actual damage in the model yield less frequency response 
change than is present in the experimental data. The estimation of damage location for damage 
type (d) is as good as the other two even though the assumed damaged shape (one circle) in the 
mathematical model is very different from actual shape. 

Comparing the damaged beams DT#-1 to DT#-9, we find that the experimental frequency 
response changes are less for a damage location further away from the clamped end. Even so, our 
results demonstrate that the method is sensitive to the different locations of the damage. Even 
though the estimated locations for experiment II are not as good as those obtained from experiment 
I, they are within 6% error from the actual locations. 

Our attempt at using a fixed damage shape is successful. The estimation of damage location for 
Damage Type 3 is as good as for Damage Type 1 and 2 although we matched the experimental data 
for DT3 with a numerical solution to a mathematical model with a singular circular hole. In many 
situations, it is more important to find whether there are damages and where they are than what 
shape they possess. In these cases, we can proceed to estimate the locations and the approximate 
sizes characterized by radii which significantly reduces computation time since we only estimate one 
parameter, the radius - as opposed to a function characterized by many unknown coefficients. 

4.4.4    Conclusion 

As we have already noted, the idea of using vibration testing as a base for damage detection in struc- 
tures is not a new one. However, most methods to date are based on modal information. In this 
report we have presented a theoretically sound computational, PDE based non-modal framework 
for the identification of spatially dependent dynamic parameters in piezoceramic embedded struc- 
tures using nondestructive vibration tests. Using data from beam experiments, we demonstrated 
the feasibility of our approach in obtaining reliable physically meaningful dynamic parameters such 
as stiffness, damping, and mass density, and hence identifying damages from the changes in those 
physical coefficients. Furthermore, this rigorous systematic approach permits one to use the piezo- 
ceramics to both excite and sense vibrations in a self-analysis framework that is the defining feature 
of smart material structures. 

Although results have been obtained only for aluminum beams, the framework can be readily ap- 
ply to plate, shell and beam like structures. However in case of the crack damage and delaminations, 
the PDE model developed here can not be applied directly since the physical parameters p, El and 
cDI can, of course, no longer be described by equations 4.173 in section 4.4.1. Nevertheless, once a 
proper model describing the dynamics of a particular structure with cracks is developed, we suggest 
that the same framework and convergence arguments could be applied with some modifications. 

The framework developed in this report is also valid for composite material structures since our 
theoretical and computational methods can include weaker (than Kelvin-Voigt) and more complex 
damping operators. 

Our efforts with variable geometry and variable elasticity parameters promise to alleviate some 
difficulties encountered by modal methods. This, among other of our findings, strongly supports our 
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own belief that geometry based partial differential equation techniques can play a very important role 
in modeling for the emerging technology of adaptive or smart material structures. Our conclusions 
are based on the methodology developed here which contains theory, computational and experimental 
tests, all of which are consistent. 
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4.5    Feedback Control of a 2D Thermal Fluid 

The problem of controlling a viscous fluid flow in a convection loop is considered. We present 
different approaches using feedback controllers for a convective flow in a circular pipe standing in a 
vertical plane (see Figure 4.22). 

Figure 4.22: Description of the thermal convection loop 

The inner radius of the pipe is Äi and the outer radius is R2. The radial coordinate r is 
measured from the inner wall to the outer wall of the pipe and the angular position <p is measured 
counterclockwise. The velocity v(t,r,<p) of the flow is given by v = v(t,r)ip where 0 is the unit 
vector along the tube and the fluid's temperature T(t,r,<p) depends on the time and the position. 
We assume that the fluid temperature at the wall equals the wall temperature plus a control source. 
In particular, we consider the temperature on the inner and outer walls 

T(t, Ru<p)= Twl(t, <p) + Wl(t, ip) 

and 

T(t,R2,<p) = TW2(t,<p)+w2(t,<p), 

respectively, as Dirichlet boundary controls. Here Twi(t,<p) and TW2{t,(p) are given wall tempera- 
tures. 

Boussinesq's approximation assumes that the fluid is assumed incompressible even when the 
temperature is not uniform. Therefore, properties of the fluid are assumed constant except the 
density in the buoyancy term.jäince in free convection the nonuniformity in specific weight is the 
motive force. The body force F is due to the gravitational acceleration and the buoyancy force per 
unit mass, that is, 

F = g + ß(T(t,r,<p)-T0)(-g), 

where g is the gravity acceleration, ß is the thermal expansion coefficient and T0 is the bulk fluid 
temperature. The equation is written in polar coordinates and we introduce the operator V2 defined 

The pressure term is eliminated from the Navier-Stokes equation by integrating along a circular path 
at a fixed radius r. Under these assumptions it can be shown that the dynamics of the flow can be 
described by the nonlinear system 

gß   r™ 
(f'r) = ^:/     T(t,r,<p) cos<p dtp+ i/Vlv(t,r), (4.190) 

dT v Ffir 
^(t,r,9)+xV^,r,,) + ^ 

dT. v{t,r) dT, , Y  d2T 
— (t,rlV) = —TL ■B-(t,r,V) + xV

2
rT(t,r,V) + ± —2 (t,r>V), (4.191) 
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with boundary conditions 
v{t,R1)=v{t,R2)=01 

T(t, Rlt ip) = Ul(t, ip),        T{t, R2, <p) = u2(t, ip). 

Here, v is the kinematic viscosity, \ is the fluid's thermal conductivity and ui and u2 are the applied 
temperature controls. Therefore, we have a quasilinear infinite-dimensional distributed parameter 
system. 

Let fii = [Ri,R2], Ü2 = [0, 2TT], fi = fij x fi2 and T = {RUR2} x Q2. The system can be written 
in the abstract form 

z(t) = Az{t) + f(z(t)) + Bu(t),        t > 0, (4.192) 

on the state space X = L2(fti) x L2(Q). Here, z(t) = (v(t,.),T(t,.,.))T is the state. The linear 
operator A = A0 + Ax is defined on 

Dom(A) = Dom(A0) = [H2^) n A^O] x [#2(tt) n H^(Q)} 

by 

M o    xV} + *&)-       A>'{o »)■ (««) 
where I: L2(tt) -> L2(Q.{) is the bounded linear operator 

aß   f2* 
[Tu>](r) = —  /     cos <pu>(t,r,(p)d(p. (4.194) 

The nonlinear operator / : ^(fjj) x #£(£}) -> X is defined by 

[/K.),r(.,.))](r,^) = ^0,-^|^(r,^T. (4.195) 

The input operator B is the unbounded linear operator B = -AH where A is the lifting of A from 
X to Dom(A*Y and # : L2(r) -*Xis given by #p = (0,Dg)T where D is the Dirichlet map for 
the Laplacian V2 on fi. Thus D : L2(T) -» L2(Q) is the bounded linear operator satisfying 

Dg = u       where       V2w = 0       and       w|r = g- (4.196) 

4.5.1    The Linear Quadratic Regulator Problem 

We linearize the system about the equilibrium point v = 0, T = 0. Since /(0,0) = (0,0)T, the 
linearized system becomes 

z{t) = Az(t) + Bu(t),    <>0,        z(0) = zo, (4.197) 

where z0eH,ueU = L2(T). 
The LQR problem is to minimize the quadratic cost defined by 

J(z0, u) = J    \{Qz(t), z(t))H + (Ru(t), u(t))v] dt (4.198) 

over all controls u € L2((0, oo); U), subject to the linear system (4.197). The state weighting operator 
for the LQR problem is 

Q = (Qv     0 \ 
V 0     QT) 

with Qv = qvlL2{n1),QT = QTIL2{U) and qv,qr positive constants. The operators iz,2(fii).-fz,2(n) 
denote the identity operators in £2(^i) and L2{Q.), respectively. The control weighting operator is 
given by R = quIu, h denotes the identity operator on U and qu is a positive constant. 
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Recall that H and U are Hubert spaces. Also, it can be shown that the operator A : V{A) —► H 
generates an analytic semigroup on H. The dense continuous injection V{A) <-» H allowed us to lift 
A to H. The input operator B defined by -AD is not bounded as an operator into H. However, 
we have the following result. 

Lemma 3 The operator B : U -► W = (V(A))' satisfies 

i~(3/4+£)B e £(L2(r);L2(fii) x L2(fl)). 

Proof:   The input operator B is given by 

(Bu,u)    =    (U,B*UJ) 

(4.199) 

9ßR2 
2n 

rR2    f2-K 

/       /     u(<p) cos<p u>i(r) drdip- / u(<p) —-(r,<p) r dip.    (4. 
JRi  Jo Jr ov 

200) 

We define the operators Bv and BT as follows 

flftfl f^2       r27T 

(Bvu,wi) = (u,B*u>i) = -^r-2- /      /     u(tp)cos<p LüUr) drdtp 
^    JRi   Jo 

(BTu,u2) = (U,B^UJ2) = - / u(<p) -^-(r,ifi) r dtp. 
Jr or) 

(4.201) 

(4.202) 

For each e > 0, the trace operator 

u,2 -> ^ : F3/2+2£(fi) -> H2e(F) C L2(r) 

is continuous. Thus, we have 

BTeC (U,[HV2+2<(ü)\'\ Ve>0. 

Also, if u>t € Hz'2+2^{) we have B>x € £2(r).  Thus, for w € H3'2+2'{Ü{) x #3/2+2<(Q), we 
have B*u € L2(T). Hence, 

BeC 
(* 

On the other hand, 

thus, 

or equivalently, 

ff3/a+2e(fii)xH3/2+2e(n)]'y 

tf3/2+2£(fi!) x F3/2+2£(fi) = Z> (&'*+<} , 

Be£(f7,p(A-(3/4+£))), 

I-(3/4+e)ße£(?7;H). (4.203) 

A 

In order to obtain existence of the LQR problem we recall that A generates an exponentially 
stable semigroup and hence we have the finite cost condition. 
Finite Cost Condition:   For every z0 G H, there exists ueU such that the cost function defined 
in (4.198) is finite. 
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Theorem 1   There exist a self-adjoint, non-negative definite operator P € C(H) that satisfies the 
Algebraic Riccati Equation (ARE) 

(Pz,Au)H + {Az,Pw)H - (R-1B*Pz,B*Pw)u + (Qz,u>)H = 0. (4.204) 

Moreover, 

1. (A^-^P € £(H),    Ve > 0, 

2. R-1B*Pe£{H,U), 

3. J(z0,uopt) = {Pz0,z0)x- 

The LQR problem has a solution of the form 

uopt(t, zo) = -R~1B*Pzopt(t, z0), (4.205) 

where zopt is the corresponding solution to (4.197) with u = uopt. 

For a given initial condition z0 G H, we solve the LQR problem (4.197)-(4.198) for the optimal 
control uopt. Note that the nonlinear operator f(z) is not taken into account in the LQR problem. 
However, in order to see how well this linear feedback performs we feed it into the full non-linear 
system (4.192) to obtain the closed-loop nonlinear system 

z    =    (A - BK)z + f(z),        t>0, (4.206) 

z(0)    =    z0. 

Here K is the bounded linear operator defined by K = R~lB*P. 
In practice, we must use some type of approximation. We consider finite element and one-mode 

approximations and use these models to construct the feedback controllers. Therefore, we can use 
existing finite dimensional algorithms. We now summarize an algorithm due to A. Krener. 

4.5.2    Krener's Algorithm 

Once the PDE has been approximated we can apply finite dimensional design. Here we review an 
approach due to Krener which consists of choosing a transformation and a state feedback that lin- 
earize the system. We emphasize that Krener's algorithm applies only to finite dimensional systems 
and has not yet been extended to infinite dimensional systems. We shall apply Krener algorithm to 
finite dimensional approximations of the Boussinesq equations. The Boussinesq equations lead to 
approximating systems with a special form so we limit our discussion to these systems. 

Consider an autonomous nonlinear system 

x = /(x) + Bu (4.207) 

where x € Etn, u e IRm, /(x) is a nonlinear vector function in x, with equilibrium point x = 0 and 
B € IRnxm. 

In order to apply the method, the system is linearized and written as follows 

x = Ax + fW(x) + Bu; + 0(xfc+1), (4.208) 

where A and B are matrices, A : ET -> Etn, B : IRm -► ]Rn, and f<fc>(x) is a nonlinear vector 
of dimension n, having entries of degree k > 2 in x, for example, if x = (xi, x2) € IR2, f(3)(x) 
contains terms which are linear combinations of xf, xfx2, xxx\, x\. Terms of order greater than k 
are contained in 0(xfc+1). Thus, the system is assumed to have nonlinear terms of order greater or 
equal k. 

This can be accomplished by taking A as the Jacobian of / at 0. Thus fW(x) represents the 
difference. 
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One then seeks a change of coordinates and a nonlinear control of order k in x, 

zfc    =    x-0(fe)(x) (4.209) 

uk    =   aW(x) + ß(k-V(x)v + v, (4.210) 

where </><*) (x) is a vector of degree k in x and a(fc) and ß(k~x) are polynomials in x of degree k and 
k - 1, respectively, such that the terms of order k cancel. 

Let [.,.] denote the Lie bracket defined for two vector fields f,g by 

The transformation <£(fc' (x) and the nonlinear vectors a(fc) and /?(fc_1) have to satisfy the homological 
equations 

f(fc)(zfc)    =    -B^k\zk) + [Azk,<j>^(zk)} (4.211) 

Bß(k-»(zk)v   =    [Bv,4>(k)(zk)}. (4.212) 

Assuming that a solution to (4.211)-(4.212) can be found, the resulting system is given by 

Zfc=Azfc+Bt>fe + 0(z{:+1), (4.213) 

and can be written as 
zk = Azfc + f(fc+1>(zfc) + Bvk + 0(zk+2). (4.214) 

This produces a system of the form (4.208). The procedure may be applied repeatedly to obtain a 
system of the desired order of linearization, given by 

z = Az + Bv + 0(zm+1), (4.215) 

for any m > 0. Here v is the control, which is calculated by solving an LQR problem. In particular, 
we minimize a given cost function J(z0,v) of the form (4.198) subject to the linear system 

z = Az + Bv. (4.216) 

If the system is controllable, the LQR problem has a unique solution 

v0pt = -Kz = R-1BTPz, 

where P is the unique, symmetric, non-negative matrix satisfying the algebraic Riccati equation 

kTP + PAT - PBR~1BTP + Q = 0. 

The control v is linear in z but is nonlinear in the original state x. The transformations <j>^ and the 
polynomials a(j) and /3(i_1), j = 2,..., m are used to rewrite the control v in terms of x. In Section 
4.5.3 we illustrate all the steps in this algorithm and apply the results to the Lorenz equations. 

4.5.3    Application to a One Mode Approximation 

Lorenz equations are typically used to describe chaotic systems. In particular, the Lorenz equations 
may be viewed as a one mode approximation to the full Boussinesq system for the thermal convection 
loop. Wang, Singer and Bau present experimental and numerical results by applying a nonlinear 
feedback law based on Lorenz model for the problem under consideration. We shall use this model 
to test and compare the LQR/linearization based control with the non-linear control generated by 
Krener's method. 
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Derivation of the Equations 

Assume a Fourier series expansion for the difference between the fluid temperature and the temper- 
ature at the wall, as follows 

oo 

T(t, r, <p) - Tw(t, <fi) = J2 c»(*'r) cos(nif) + *n(«, r) sm(rvp). (4.217) 
n=0 

This expansion is then substituted into the partial differential equations (4.190)-(4.191) obtaining 
differential equations for v(t,r) and the coefficients of the Fourier series. The equations for v(t,r), 
ci(t,r), and Si(t,r) decoupled from the rest of the system. 

Wang, Singer and Bau assumed that the velocity and the temperature are independent of r. 
York, York and Mallet-Paret expanded v(t,r),ci(t,r) and si(t,r) in a series of Bessel functions of 
order zero. Both approaches produce an infinite set of ordinary differential equations. The first 
three equations, which correspond to the first mode, decoupled from the others. They are similar 
to the Lorenz equations and are given by 

±i(t)    =    P(-X!(t) + x2(t)) 

±2(0    =    -x2(t) - Xl(t)x3(t) (4.218) 

x3(t)    =   xi(t)x2(t) - x3(t) - Rü, 

where, in both cases, P and R are related to the loop's Prandtl number and the loop's Rayleigh 
number, respectively. Also , R and ü are related to the temperature at the wall. These relationships 
depend on the approximation used to derive the equations and are obtained after considering the 
dimensionless numbers P and R. 

The Controlled System 

Setting ü(t) = 1 — ^u(t) leads to the lumped parameter control system 

±i(t)    =    P(-xi(t)+x2{t)) 

x2(t)    =    -x2(t) - xi(t)x3{t) (4.219) 

x3(t)    =   xi(t)x2(t)-*3(*)--R+ «(*)■ 

For ü = 1 (i.e. u(t) = 0), the three equilibrium points of the system (4.219) are given by 

x1 = (0,0,-A)T
>    x

2 = (i/R=l,VR=T,-l)T 

and       x3 = (-y/R-1, -y/R^l, -l)T. 

The stability of each fixed point depends on the parameter values. 

LQR Optimal Control 

We consider now the LQR problem associated to equations (4.219). First, we linearize the system 
about an equilibrium xe = x = (xi,X2,X3)T. Then, we have 

x = ALx. + BLu (4.220) 

where x = x — x, 
'  -P     P      0 

AL= \ -x3    -1    -xi I (4.221) 
X2        X\        -1 
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and 

(4.222) 

The system (4.218) is equivalent to the system in the new variable x, given by 

x = ALx + fLx + BLu (4.223) 

where /L is denned by 

fL(x) = I -£ix3    ■ (4.224) 
\  XiX2   ) 

The LQR problem is to minimizes the quadratic functional 
/•OO 

J= /    (xT{t)QLx(t) + RL[u{t))2dt, (4.225) 
Jo 

where QL = QJ,>0 and RL > 0, subject to the linear system (4.220)-(4.222). 
The optimal control 

ü0pt(t) = -KLx(t) (4.226) 

is calculated solving the above stationary linear quadratic regulator problem. 
We then feed the system (4.223) to get the nonlinear closed-loop system 

x = (AL- BLKL)x + fLx, (4.227) 

Krener's Nonlinear Control 

Here we show how the nonlinear control proposed by Krener is applied to (4.219). The system 
(4.219) is written in the form 

x = ALx + fL (x) + BL u, (4.228) 

where AL,BL and fL are defined in (4.221), (4.222) and (4.224), respectively. Introduce now a 
quadratic change of coordinates 

z = x-0(2)(x) (4.229) 

and a quadratic control of the form 

u = a(2) (x) + ß(ßc)v + v, (4.230) 

in order to obtain a higher order approximate system. We used a Matlab package provided by 
Krener in order to accomplish this numerically. 

Observe that the given system has a nonlinearity of degree 2, thus it is completely linearized in 
one step. The resulting linear system, in the new variable z, is 

z = ALz + BLv, (4.231) 

where AL and BL are given by (4.221) and (4.222), respectively. The matrices AL and BL are the 
same as in the LQR problem considered previously (see Section 4.5.3). Thus, the optimal control is 
v = —KL%, where KL is the same gain matrix as in equation (4.226). 

The input u to the equation (4.228) in the x-coordinates can be obtained form (4.229)-(4.230) 
as follows 

u(x)    =    a<2>(x) + (l+/J(x)))« 

=    a(2>(x) + (1 + ß(x))(-KLi + KL4>{2){x)) 

=    -KLx + [a<2>(x) - KLß(x)x + KL<t>^(x)] 

+ KL<j>M{x)ß(x). (4.232) 
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The resulting nonlinear closed-loop system in x is given by 

x = (AL- BLKL)x + fL(x). (4.233) 

Although the controller (4.232) has a cubic term, this term is relative small and is neglected. 
Consequently, we are lead to the non-linear feedback law 

u(x) = -KLx + q(x) (4.234) 

where q(x) is the quadratic function given by 

q(x) = a<2>(x) - KLß(x)x + KL^
2\x). (4.235) 

A Modification of Krener's Controller 

While experimenting with the control (4.234) we observed that we could improve performance by 
scaling the non-linear term. In particular, we weighted the quadratic term by an scalar K so that a 
modification of nonlinear control (4.234) becomes 

u(x) = -KLx + nq(x). (4.236) 

An Ad Hoc Controller 

In an experimental study, Wang, Singer and Bau propose a nonlinear control of the form 

u(x)    =    C(sgn(x2)x2-x2), 

=   C(abs(x2) -x2), 

where C is a constant and x2 is the second component of the fixed point to be stabilized. Although 
this controller is nonlinear, it is based on "engineering insight" and not on any given algorithm. 

A Comparison of the Four Controllers 

Numerical experiments were conducted to test the controllers. For P = 4 the critical value of R is 
Rc = 16. Here, P = 4 and R = 50 were chosen. Hence all three equilibrium points, 

{(0,0,-50), (7,7,-1), (-7,-7,-1)} 

are unstable. We set Q = I, N = 1 and controlled to the equilibrium xe = (7,7, -1). 
The Lorenz attractor obtained by setting P = A and R = 50 is shown in Figure 4.23. The 

marks V in the figure indicate the location of the equilibrium points for the parameter values 
{(0,0,-50); (7,7,-1); (-7,-7,-1)}. 

In Figure 4.24 we show the trajectories of the closed loop system for each of the control laws 
described above. Here Q = I, N = 1, the initial point is (-3,9, -8) and the equilibrium point to be 
stabilized is xe = (7,7, -1). 

In Figure 4.25 the components of each of the controls used are plotted. Similar results are 
obtained for different initial points. Here we present a particular case as an example. We conducted 
several simulations with different initial data and similar results were observed. From the numerical 
results we see that all of the feedback controllers stabilize the chaotic system. The linear LQR 
optimal control and the nonlinear controller suggest by Wang, Singer and Bau have slow response. 
Similar results are obtained for the nonlinear control (4.234). However, the scaled controller (4.236) 
improved performance as illustrated in Figure 4.24. 

Observe that the non-linear controller (4.234) shows some improvement over the LQR controller 
and greatly reduces the oscillations found in the nonlinear controller proposed by Wang, Singer and 
Bau. Hence, it is worthwhile to investigate the effectiveness of these approach on a more detailed 
finite element model. 
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Figure 4.23:   Lorenz Attractor.    Parameters:   P — 4, R — 50.    Equilibrium points (7,7,-1), 
(_7: _7) _i) and (0,0, -50). Initial Point xo = (-3,9, -8). 

4.5.4    Weak Formulation and Finite Element Model 

The abstract form of the PDE model in W is 

z   =   Az + f(z) + Bu,        t> 0, 
z(0)    =    ZQ&H. 

Therefore, for w e W = T>{Ao), it follows that 

(i,w>    =    (Az,u) + {f(z),u>) + {Bu,u>) 
=    (Aoz, w) + (A1Z, OJ) + (f(z), w) + (Bu, w) 

Note that if a finite element scheme is based on the above weak problem, then one needs test 
functions u <E V(M) = [tf2(^i) n H^Qj)] x [H2(Cl) n H^(tt)] . 

Thus, for w e W, we obtain 

(z, u) = ((-Ao)1/2z, {-Aa)1'2») + (Ai*, «) + </(*), u) + (u, B*u>). (4.237) 

The last term in this equation is the only difficult term. In order to relax the smoothness on ui 
one must define < u, B*u> > for u e HQ (^I) 

x H&(ß). First observe that 

(w, F"w) = —- /      /     u(ip) cos ip wi(r) drdtp - x / «(v) "H-(r. v) r d(P, 
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Figure 4.24:  Solutions of the nonlinear closed-loop system feeding by four feedback controllers. 
Parameter values: P = 4, R = 50. Equilibrium Point xe = (7,7, —1). Initial Point xo = (—3,9, —8). 

holds for u = (wi, w2)
T with Ul e H^(Üi),u2 € H2(Q) n J3j(n). Moreover, if u e Hl'2{T) and 

W2 € .ff1^), then the trace theorem implies that, ^3- 6 ff-1/2(r) and 

/ U^ -§z(r'iP)r dv- 
du2\ 
or? /Hi/2(r)xH-V2(r) 

is well defined. Thus, if u 6 ff1/2(r) then #u e V and 

2TT yRl 

öD      rtt2    /*-(S7r /* *i    ■ 

(Bu, u) = (u, B*u>) = -^-?- /      /     «(*>) cos y wi(r) drdy> - x / ufe>) -r-2-(r, y>) r dtp, (4.238) 
^   JRI  ./o Jr dV 

for w e -Ho(^i) x #o(fi)- Consequently, (4.238) is well defined for any u € i?1/2(r) and w e 
flo (^l) x -Ho W- Thus, in this case, piecewise linear functions that vanish on the boundary may be 
considered in the finite element scheme. 

Finite Element Approximation 

A GalerMn-based finite element approximation scheme is applied to variational form of the Boussi- 
nesq model of the thermal convection problem. The discretization in space (only) yields a semidis- 
crete scheme and an approximate solution is obtained by solving a finite dimensional ordinary 
differential equation. 

We consider a uniform triangulation in the polar plane consisting of sector elements. This is a 
natural partition for the given domain and it provides a perfect fit at the boundary (see Figure 4.26). 
Moreover, sector elements are regarded as rectangles in the polar coordinate system, yielding easy 
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Figure 4.25: Components of the feedback controllers. Parameter values: P = 4, i? = 50. Equilibrium 
Point to be Stabilize xe = (7,7, -1). Initial Point xo = (-3,9, -8). 

computations. The finite dimensional space is given by a product space of the form Vh = V/1 x V£. 
We take V/1 to be the space of quadratic splines defined on fli = [i?i,i?2] that vanish on the 
boundary. Then, the approximate velocity is obtained by using Lagrangian quadratic elements in 
JR.. We choose a basis {$£, 1 < k < Nv} of V/1 C H$(Qi), the approximate velocity vh(t, r) can be 
expressed as a linear combination of {*{t(r)}, 

Nv 

A*,r) = ][>£(t)$E(r) (4.239) 
fc=i 

with Wfc(*) e 1R, 1 < k < Nv. In order to approximate the temperature, we used the space V^ of 
piecewise bilinear functions defined on Q that vanish on the boundary T. Let {*£, 1 < k < NT} 

be a basis of V£ C HQ(Q). The approximate temperature Th(t,r,<p) can be expressed as a linear 
combination of {*£(?•, </?)}, 

Th(t,r,<p) = J2T£(Wh
k(r,V), 

k=i 

with T£{t) e 1R, 1 < k < NT and periodic condition Th(t,r,0) = Th(t,r,27r). 
Let N = Nv + NT and consider the set of functions 

(4.240) 

B miLt 

- \(o)'(o2)'-■■'( o"j'V*oV'(*w" "V*NT-Jr 
where {$^, 1 < k < Nv} is a basis for V/1 and {*^, 1 < k < NT} is a basis for V£. Clearly, B is a 
basis for Vh. 
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Figure 4.26: Polar Coordinates Triangulation Mapping 

Thus, the approximated solution zh(t) = (vh(t), Th(t))T € Vh to the abstract system (4.192)is 
written as 

N 

3=1 

for some z$(t) € IR, 1 < j < N. 
Substituting this approximation to the state into the variational form in equations (4.237) letting 

the test functions u> range over the basis vectors, we obtain the finite dimensional system 

zh(t) = Ahzh(t) + fh(zh(t)) + Bhuh, 

or equivalently, 

—vh    =    A^,vh ^ A\Th + B^uh, 

dt 
Tn    =   A^Tn + f£(zn) + B$u lh~.h 

(4.241) 

(4.242) 

(4.243) 

where 

-    (JfcJ, 
Ah   = 

no = 

Bh    = 

'Ah
v 

0 
0 
Ah + 0   A\ ' 

0      0 

0 

. ffah). 

<h 
T Bf1 
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Let Mh = 
M*     0 

0     Mh 
denotes the mass matrix where 

tj=i,...,Ar„ 

and 
Mk = >** » *j 'ia(n)Jiti=1  

..JVT- 

The operators A*, A^, A^, /£, B* and 7?£ are represented by the following matrices 

Ah
v = (M*)- 

A% = (M£)~ 

fh(zh) = (Mty 

Bh
v = (M$y 

B\ = (M£)~ 

i,j=l,...,N„ 

NT ' 
[-x(^^)LHn)l.=h 

[<'(^WL,...,„r' 
^(*i>J    cos<puh(.,ip)d<p 

i=l,...,Nv,l<j<NT 

L'(Sli) t=l,...,JV„ 

-x (f'»' L2(fi) 

(4.244) 

(4.245) 

(4.246) 

(4.247) 

(4.248) 

(4.249) 

(4.250) 

(4.251) 
i=i,...,ArT 

4.5.5    Numerical Results 

In this section we present some numerical results to analyze the performance of a nonlinear control 
and compare it to the optimal control given in (4.226). Here we consider water flowing in the pipe. 
The state T(t, r, (p) is interpreted as a difference in temperature from the bulk temperature to 60°F. 
We consider a pipe with the same dimensions as the one used by Wang, Singer and Bau in their 
experiments. The system parameters are given in Table I. 

Table I. System parameters. 

Ä1 fl2 V ß X 

1.1975m 1.2959m 1.22 10-5 ft2/s 8.0 10~5  /°F 1.514 10~6 ft2/s 

The state weighting, Q, and control weighting, R, are given by 

nh_(l5O0I*      0   \ 
*   -\     0        50737' 

Rh = 7.5 10-37£. 

In this case, a control is applied on the outer boundary. Figures 4.27-4.29 show the results of a 
typical run. The number of subdivisions is 3 in radial direction and 5 in angular direction. Figure 
4.27 shows the open-loop system response. 

The closed-loop response for the LQR controller applied to the full nonlinear system is illustrated 
in Figure 4.28. Finally, Figure 4.29 shows the closed-loop response for the nonlinear control law. 

Although there is much more to do before a theoretical resolution of these issues can be found, the 
numerical evidence seems to suggest that, for the full Boussinesq equations, nonlinear controllers 
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Figure 4.27: Open Loop response. 
r— 1 .230 ft r—1.263 ft 
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Figure 4.28: Closed Loop response with LQR control. 
r— 1 .230 ft r—1 .263 ft 

SO 100 
time (s) 

Figure 4.29: Closed Loop response with nonlinear control. 
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can enhance performance. Although there is some improvement over linear controllers, it is not 
yet clear that this improvement is significant. One reason for this may be that, if the approximate 
model sufficiently resolves the weakly excited small-scale (spatial) modes, then the open-loop system 
can have considerable damping. Hence, feedback controllers (neither linear nor nonlinear) may not 
significantly enhance the existing natural dissipation. 
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Optimal Design 

Here we present a detailed summary of several projects in the area of optimal design for fluid 
flow systems. Again, since this report covers the four year period defined by the grant, we present 
summaries of projects completed during the first three years as well as summaries of two new projects. 
These two final projects were completed during the period 1 May 1996 and 30 April 1997. 

In the area of optimal design, we made significant progress on Sensitivity Equation and Adjoint 
Methods for fluid flow systems. This area will continue to be a central focus of CODAC's research 
program. In particular, we plan to enhance these methods and to move the basic research into 
industry and Air Force applications. 
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4.6    Optimal Design of a Forebody Simulator 

In this section, we review our progress in the area of optimal design. Initially, our projects were 
motivated by design problems for wind tunnel configurations at the Arnold Engineering Development 
Center (AEDC). However, this work has expanded to several other application areas. A typical 
design involves the specification of the internal geometry and tunnel operating conditions to produce 
a desired flow profile in the test region of the wind tunnel. 

The initial problem involved a forebody simulator design. The AEDC is considering a free-jet 
test facility for full-scale testing of engines in various free flight conditions. Although the test cells 
are large enough to house the jet engines, they are too small to contain the full airplane forebody 
and engine. Thus the effect of the forward fuselage on the engine inlet flow conditions must be 
"simulated" in order to achieve an accurate test. One approach to solving this problem is to replace 
the actual forebody by a smaller object, called a "forebody simulator" (FBS), see Figure 4.30, and 
determine the shape of the FBS that produces the best flow match at the engine inlet. 

In developing practical computational methods for such optimal design problems, one often relies 
on cascading simulation software into optimization algorithms. Most optimization algorithms require 
gradient (sensitivity) information which, in this case, describes how sensitive the cost function (flow 
variables) is (are) to changes in the shape of the FBS, boundary conditions and wind tunnel operating 
conditions. In our study below, we use the Sensitivity Equation Method SEM to generate optimum 
forebody designs for a model 2D forebody design problem. 

The following two sections are concerned with the effect of cascading simulation software into 
optimization algorithms. The example in the second section shows that the numerical approximation 
of the cost functional can generate artificial local minimum. Two methods are investigated to correct 
this problem. The first method removes the artificial local minimum by adding dissipation to the 
flow (which smears out the shock). The second method removes them by adding "dissipation" to 
the cost functional directly. This is possible here because of the shock capturing scheme used to 
predict the flow. 

The Sensitivity Equation Method (SEM) is an approach that views the simulation scheme as 
a device to produce approximations of both the function and the sensitivities. The basic idea is 
to produce approximations of the infinite dimensional sensitivities and to pass these "approximate 
derivatives" to the optimizer along with the approximate function evaluations. The goal here is to 
illustrate that a SE based method can be used with standard optimization schemes to produce a 
practical fast algorithm for optimal design. We concentrate on a particular application (the optimal 
forebody design problem) and use a specific iterative solver for the flow equations (PARC). Many 
flow solvers are iterative and for these types of codes, the SE method has perhaps the maximum 
potential for improving speed and accuracy. 

This problem is a two dimensional analogue of the forebody simulator design problem, see Fig- 
ure 4.30. The geometry we consider is illustrated in Figure 4.31. The goal is to find the shape of 
the forebody simulator and prescribe the inlet Mach number so that the flow at the inlet reference 
plane matches a desired flow profile (the operating condition of the aircraft) as closely as possible. 
To make this problem statement precise, we describe below the model used for computing the flow. 

The underlying mathematical model is based on conservation laws for mass, momentum and 
energy. We will assume a steady, inviscid flow as our model. Thus the flow is governed by the steady 
Euler equations with appropriate boundary conditions. For now we will consider the unsteady form 
of the equations which are used in generating a numerical solution to the steady state equations. 
The equations, in conservation form, are: 
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where 

Figure 4.30: Three Dimensional Forebody Simulator Problem 

m 

n 

\E ) 

Fi = 

m 

mu + P 

mv 

\ (E + P)u J 

and F2 = 

n 

nu 

nv + P 

\(E + P)v J 

(4.253) 

The velocity components u and v, the pressure P, the temperature T, and the Mach number M 
are related to the conservation variables, i.e., the components of the vector Q, by 

m 
i 

P 

n 
v = -, 

P 
E--p(u2 + v2) P = (7-l)(. 

T = 1(1-l)f--l(u
2 + v2)\        and       M2 = U2 + V2 

(4.254) 

At the inflow boundary, we want to simulate a free-jet, so that we specify the total pressure P0, 
the total temperature T0 and the Mach number M0. We also set v = 0 at the inflow boundary. 
If ui, Pj and T/ denote the inflow values of the x-component of the velocity, the pressure and the 
temperature, these may be recovered from P0, T0 and M0 by 

r° '       ^ = ^ = ^^.(4.255) Ti = 
(1 + ^)' 

Pi 
(1 + ^M0

2
)^T 

and 
(i + W 

The components of Q at the inflow may then be determined from (4.255) through the relations 

Pi 
iPi 

mi-piui,        ni = Q       and       Ei Pi 
I+"2 (4.256) 
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The forebody is a solid surface, so that the normal component of the velocity vanishes, i.e., 

UT]I + vr/2 —0       on the forebody, (4.257) 

where 771 and T/2 are the components of the unit normal vector to the boundary. Note that we 
impose (4.257) on the velocity components u and v, and not on the momentum components m and 
n. Insofar as the state is concerned, it is clear that it does not make any difference whether (4.257) 
is imposed on m and n or on u and v, since m = pu and n = pv and p ^ 0. It can be shown that it 
does not make any difference to the sensitivities as well. 

Assume that at x — ß the desired steady state flow Q = Q{y) is given as data on the line (called 
the Inlet Reference Plane) 

IRP = {{x,y)\x = ß,a<y<6}. 

Also, we assume here that the inflow (total) Mach number Mo can be used as a design (control) 
variable along with the shape of the forebody. Let the forebody be determined by the curve T = T(x), 
a < x < ß and let p = (Mo, T(-)). The problem can be stated as the following optimization problem: 

Problem FBS Given data Q = Q{y) on the IRP, find the parameters p* = (M0*,r*(-)) such that 
the functional 

rS 

\\Q0o{ß,y)-Q(y)fdy (4.258) ™-U 
is minimized, where Qoo(x,y) = Qoo(x,y,p) is the solution to the steady state Euler equations 

G(Q,P) = £F1 + ^F2 = 0. (4.259) 

In the FBS design problem, the data Q is generated both experimentally and numerically. In 
particular, the full airplane forebody (which is longer and larger than the desired FBS) is used to 
generate the data. Since the FBS is "constrained" to be shorter and smaller, we shall consider the 
optimization problem illustrated in Figure 4.32 below. The data Q is generated by solving (4.252)- 
(4.257) for the long forebody in Figure 4.32-(a) and the problem is to find p* to minimize J where 
the shortened FBS is constrained to be one half the length of the "real forebody." This problem 
provides a realistic test of the optimal design algorithm in that the data can not be fitted exactly. 
Also, we note that we have a problem with shocks in the flow field. We have shown that optimization 
of flows with shocks can be difficult and requires some understanding of the impact that shocks have 
on the smoothness of the cost functional. 

Clearly the statement of the problem is not complete. For example, one should carefully specify 
the set of admissible curves T(-) and questions remain about existence, uniqueness and integrability 
of "the" solution <3<x>- We will not address these issues here. 

Most optimization based design methods require the computation of the derivatives ■§- Qoo (x,y,p). 
These derivatives are called sensitivities and various schemes have been developed to approximate 
the sensitivities numerically. A common approach is to use finite differences. In particular, the 
steady state equation (4.259) is solved for p and again for p + Ap and then -§-Qoo(x,y,p) is ap- 

proximated by Q°°(x^'P+^-Q°°(J^'P), This method is often costly and can introduce large errors. 

Another approach is to first derive an equation (the sensitivity equation) for -§-Qoo(x, y,p) and then 
numerically solve this equation. We shall illustrate this approach for the forebody design problem. 
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4.6.1    Sensitivity Equations 

First, we consider the design parameter p, either the square of the inlet Mach number (M^) or a 
forebody shape parameter. We will present the equations for the sensitivity 

w    dp 
m' 

n' 

\E' ) 

(4.260) 

where 

and E' 
dE 
dp 

(4.261) 
, _ dp , _ dm , _ dn 

dp' ~ dp' ~ dp 

The differential equation system (4.252) has no explicit dependence on the design parameter p, 
so that equations for the components of Q' are easily determined by formally differentiating (4.252) 
with respect to p. The result is the system 

dQ'     dF{     dFi     n 

dt        dx       dy 
(4.262) 

where 

F{ = 

m 

mu' + m'u + P' 

mv' + m'v 

\(E + P)u' + (E' + P')u J 

and FZ = 

n 

nu' + n'u 

nv' + n'v + P' 

y(E + P)v' + {E' + P')v J 

(4.263) 

and where, 
,     du ,     dv 

u = -^-,        v = 
dp 

and T' = 
dT 

dp' dp'        '        dp        *"""       "       dp' 

and where, through (4.254), the sensitivities (4.261) and (4.264) are related by 

v! = -m' - ™p',        P' = {i- 1) (E' - ±p'(u2 + v2) - p(uu' + vv')\ , 

v' = -n' - -V        and       T' = 7(7 - 1) (-E' - ^p' - (uu' + vv')) . 
p        p2 \p P2 J 

(4.264) 

(4.265) 

Note that (4.262) is of the same form as (4.252), with a different flux vector. In particular, 
(4.262) is in conservation form. As a result of the fact that (4.262) is linear in the primed variables, 
and that by (4.265) u', v' and P' are linear in the components of Q', (4.262) is a linear system in 
the sensitivity (4.260), i.e., in the components of Q'. 

Now, we need to discuss the boundary conditions for Q'. Here we will need to be more explicit 
about which design parameter we are studying. Except for the inflow conditions, all boundary 
conditions are independent of the design parameter Mfi. Thus, the latter may be differentiated with 
respect to Mfi to obtain boundary conditions for the sensitivities. For example, at the forebody 
where (4.257) holds, we simply would have that 

u'rji + v'r}2 =0       on the forebody. (4.266) 

Similar operations yield boundary conditions for the sensitivities along symmetry lines, other solid 
surfaces and at the outflow boundary. 
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The inflow boundary conditions for the sensitivities may be determined by differentiating (4.255) 
and (4.256) with respect to the design parameter M§. Note that this parameter appears explicitly 
in the right-hand-sides of the equations in (4.255) and (4.256). Without difficulty, one finds from 
(4.256) that 

Pi = YPI ~ ~JVTI>     mi= (>lUi+ U/^> 

n'j = 0       and       E\ = -P[ + r^/J/ + piuiu'j, (4.267) 
7 — 1  ■       2 

where, from (4.255), 

T;--(V)ri + ^M2f    p;--(i) 
and       "' = ^ + YkT'1 = ,    ^    a,./2 (1 + (7 " D^o2) ■ (4-268) 

2M0     2VT/ 2M0 (l + VMo) 

We assume that the forebody is described in terms of a finite number of design parameters which 
we denote by Pk, k = 1,..., K, and that the forebody may be described by the relation 

y = $(x;P1,P2,...,PK),        a<x<ß. (4.269) 

All boundary conditions except the one on the forebody also do not depend on the forebody 
design parameters Pk, k = 1,..., K. For example, consider the inflow boundary conditions (4.255)- 
(4.256). Differentiating these with respect to Pk, k = l,...,K (and denoting the differentiated 
variables by a subscript k) yields that 

Pki = mu = nki = EkI = Tu = Pki = uki = vkI = 0 (4.270) 

at the inflow boundary.  Now consider the boundary condition (4.257) on the forebody.  We have 
that on the forebody 

^ = -£■ (4.271) 
1)2 dx 

Combining (4.257) and (4.271) we have that 

u—-v = 0 (4.272) 

along the forebody or, displaying the full functional dependence on the coordinates and design 
parameters, we have at a point (x, y) on the forebody, and at any time t, 

u (t,x,y = $(X;PUP2,...,PK);MIP1,P2, ...,PK) -^(X;PI,P2, ...,PK) 

-v{t,x,y = §{x;P1,P2,...,PK);Ml,Pl,P2,...,PK)=0. (4.273) 

We can proceed to differentiate (4.273) with respect to any of the forebody design parameters 
Pfc, k = 1,..., K. The result is that, along the forebody for k = 1,..., K, 

UkTx ~Vk = - U) UU U) ~U^ m)+ U J Km)' (4274) 

where u, v and their derivatives are evaluated at the forebody (x, y = 3>(x)). 
If an iterative scheme is used to find a steady state solution of this system ((4.262), (4.270), 

(4.274)), then we assume that present guesses for the state variables u and v and their derivatives 
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du/dy and dv/dy and for the design parameters M% and Pk, k = 1,... ,K, are known. It follows 
that the right-hand-side of (4.274) is known as well and equation (4.274), the boundary conditions 
along the forebody for the sensitivities with respect to the forebody design parameters, is merely an 
inhomogeneous version of (4.272), the boundary condition along the forebody for the state. 

Consider now the problem of minimizing J(p) as denned above. Most optimization algorithms 
use gradient information. In particular, if p denotes one of the design parameters, then the derivative 

d_ 
dp J(P) -[<\ 

d_ 
dp Qoo(ß,y,p) ,Qoo(ß,y,p)-Q(y) > dy (4.275) 

may be required in the optimization loop. The sensitivity -§-Qoo(x,y,p) satisfies the steady-state 
version of the sensitivity equations (4.262). In practice one must construct approximations to 
■§^Qoo(x,y,p) and feed this information into the optimizer. 

Assume that one has a particular simulation scheme (finite differences, finite elements, etc.) to 
approximate the flow Qoo(x, y,p) on a given grid, i.e. 

Qh(x,y,p) -><?oo0r,t/,j5), (4.276) 

as the "step size" h —» 0. Given the design parameter p, one constructs a grid (depending on p) and 
then computes Qh(x,y,p) « Qoo(a;,y,p). This process may require some type of iterative scheme. 
We will address this issue below. In theory, one could use the same grid and computational scheme 
to approximate -§^Qoo(x,y,p) so that one generates "approximate sensitivities" 

d_ 
dp Qoo(x,y,P) 

dp 
Qoo{x,y,p) 

as h —► 0. It is important to note that in general 

ö-Qoo(x,y,p) ^Q-[Qh(x,y,p)], 

(4.277) 

(4.278) 

i.e.  this approach may not provide "consistent sensitivities".  However, some schemes do provide 
consistent derivatives and even if (4.278) holds, the error 

EDh dp 
Qoo(x,y,p) — {Qh(x,y,p)} (4.279) 

may be sufficiently small so that the optimization algorithm converges. Trust region methods are 
particularly well suited for problems of this type, where derivative information may contain (small) 

errors. As we shall see below, there are certain cases where ■§^Qoo(x,y,p)\   can be computed fast 
and accurately.  Hence, the SE method provides estimates for sensitivities that may prove "good 

enough" for optimization and yet relatively cheap to compute. A comparison of   -§-Qoo{x,y,p) 

and various finite difference approximations of ^ [Qh{x,y,p)\ has shown this to be the case. 
It is important to note that the details of the computations needed to approximate a sensitivity 

are not the central issue here. For example, the sensitivity equations (4.262) are viewed as indepen- 
dent partial differential equations that must be solved by "some" numerical scheme. This scheme 
does not necessarily have to be the same scheme used to solve the flow equation (4.252), although 
as we shall see below, there are cases where using the same scheme is a useful approach. 

Also, note that the sensitivity equations are derived for the problem formulated on the "physical" 
domain. If one uses a computational method that maps the problem to a computational domain 
(as does PARC), then the SEM does not require derivatives of this mapping. One simply maps 
the sensitivity equation (including the necessary boundary conditions), grids the computational 
domain, solves the resulting transformed equations and then maps back to the physical domain. 
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If, on the other hand, one mapped the flow equation (4.252) and derived a sensitivity equation in 
the computational domain, then to obtain the correct sensitivities one would have to compute the 
mapping sensitivity. Therefore, it is more efficient to derive the sensitivity equations in the physical 
domain. 

Finally, we note that the SEM described here has one additional benefit. To compute a sensitivity, 
say -§-Qoo{x, y,p), one first selects the parameter value p, constructs a computational grid and solves 

grQoo(z, J/,p)    • There is no need to compute grid sensitivities. for 

4.6.2    Computing Sensitivities using an Existing Code for the State 

Suppose one has available a code to compute the state variables, i.e., to find approximate solutions 
of (4.252) along with boundary and initial conditions. In principle, it is an easy matter to amend 
such a code so that it can also compute sensitivities. 

First, let us compare (4.252) with (4.262). If one wishes to amend the existing code that can 
handle (4.252) so that it can treat (4.262) as well, one has to change the definitions of the flux 
functions from those given in (4.253) to those given in (4.263). Note that the solution for the state 
is needed in order to evaluate the flux functions of (4.263). 

Next, note that (4.262) is the same differential equation for sensitivity with respect to either the 
inlet Mach number squared or the forebody parameters. Thus, the changes made to the code in 
order to treat (4.262) will handle both of these cases. In fact, as long as the differential equation 
and any other part of the problem specification do not explicitly depend on the design parameters, 
the analogous relation will be the same for all the sensitivities. 

The only changes that vary from one sensitivity calculation to another are those that arise from 
conditions in which the design parameters appear explicitly. In our example, for the sensitivity with 
respect to M$, one must change the portion of the code that treats the inflow conditions (4.255)- 
(4.256) so that it can instead treat (4.267)-(4.268). In the problem considered here, the nature (i.e. 
what variables are specified) of the boundary conditions at the inflow, and everywhere else, is not 
affected. Note that for the sensitivity with respect to MQ, the boundary condition (4.266) on the 
forebody is the same as that for the state, given by (4.257). 

For the sensitivities with respect to the forebody design parameters, the inflow boundary condi- 
tions simplify to (4.270), i.e., they become homogeneous. The boundary condition at the forebody 
is now given by (4.274). Once again, the nature of the boundary conditions is unchanged from 
that for the state and only the specified data is different. For the inflow boundary conditions, we 
may still specify the same conditions for the sensitivities, but now they would be homogeneous. 
The boundary conditions along the forebody change in that they become inhomogeneous, (compare 
(4.272) and (4.274)). 

In summary, to change a code for the state so that it also handles the sensitivities, one must 
redefine the flux functions in the differential equations, and the data in the boundary conditions. 
The changes necessary in the code to account for any particular relation that does not explicitly 
involve the design parameters are independent of which sensitivity one is presently considering. 

The previous remarks are concerned only with the changes one must effect in a state code in order 
to handle the fact that one is discretizing a different problem when one considers the sensitivities. 
We have seen that these changes are not major in nature. However, there are additional changes 
that may be needed when one attempts to solve the discrete equations. In the numerical results 
presented below we use the finite difference code "PARC" (used by engineers at AEDC) to solve the 
state and sensitivity equations. However, the following comments apply equally well to other CFD 
codes of this type. 

Since we are interested in steady design problems, the time derivative in (4.252) is considered 
only to provide a means for marching to a steady state. Now, suppose that at any stage of a Gauss- 
Newton, or other iteration, we have used PARC to find an approximate steady state solution of 
(4.252) plus boundary conditions. In order to do this, one has to solve a sequence of linear algebraic 
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systems of the type 

(/ + AtA(Q[n))) Q<"+1) = (<#> + AtB(Q^)) ,        n = 0,1,2,..., (4.280) 

where the sequence is terminated when one is satisfied that a steady state has been reached and 
where Q£> denotes the discrete approximation to the state Q at the time t = nAt. We denote this 
steady state solution for the approximation to the state by Qh. One problem of the type (4.280) is 
solved for every time step. In (4.280), the matrix A and vector B arise from the spatial discretization 
of the fluxes and the boundary conditions. Both of these depend on the state at the previous time 
level. 

Having computed a steady state solution by (4.280), the task at hand is now to compute the 
sensitivities. We will focus on Q', the sensitivity with respect to the inflow Mach number. Analogous 
results hold for the sensitivities with respect to the forebody design parameters. Recall that given 
a state, the sensitivity equations are linear in the sensitivities. Therefore, if one is interested in the 
steady state sensitivities, instead of (4.262) one may directly treat its stationary version 

0*i     dF2     n 

Since (4.281) is linear in the components of Q\ one does not need to consider marching algorithms 
in order to compute a steady sensitivity. One merely discretizes (4.281) and solves the resultant 
linear system, which has the form 

AQh)Q'h = B(Qh), (4.282) 

where Q'h denotes the discrete approximation to the steady sensitivity. The matrix A and vector B 
differ from the A and B of (4.280) because we have discretized different differential equations and 
boundary conditions. Note that A and B in (4.282) depend only on the steady state Qh and thus 
(4.282) is a linear system of algebraic equations for the discrete sensitivity Q'h. 

The cost of finding a solution of (4.282) is similar to that for finding the solution of (4.280) for 
a single value of n, i.e. for a single time step. The differences in the assembly of the coefficient 
matrices and right-hand-sides of (4.280) and (4.282) are minor. Thus, in theory at least, one can 
obtain a steady sensitivity in the same computer time it takes to perform one time step in a state 
calculation. If one wants to obtain all the sensitivities, e.g., K + 1 in our example, one can do so at 
a cost similar to , e.g., K+l time steps of the state calculation. This is very cheap compared to the 
multiple state calculations necessary in order to compute sensitivities through the use of difference 
quotients. 

Although (4.282) is in theory no more complex than one time step in (4.280), we can solve 
(4.281) by using the same iterative (or another) scheme. The simplest approach (but certainly not 
the optimal approach) is to use the PARC code to solve (4.281) by time marching. In particular, 
assume that Q^n) is a solution to (4.280), then the system 

[/ + AtA'{Q™)] (Q't+1) = [(Q')™ + AtB'(Q^)] (4.283) 

can be used to find (Q')^+1) given (Q')^. Thus, one makes an initial guess for Q^ and (Q^)(0) 

and then iterates (4.280) and (4.283) simultaneously. 
In practice, these "optimal" estimates of speed up are rarely achieved. Moreover, as noted 

above, it is important to note that finite difference (FD) and sensitivity equation (SE) methods 
do not necessarily produce the same results. Since the ultimate goal is to find useful and cheap 
gradients for optimization, the most important issue is whether or not the SE method combined 
with an optimization algorithm produces a convergent optimal design as fast as possible. We have 
tested this scheme on the forebody design problem and the next section contains a summary of these 
results. 
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4.6.3    An Optimal Design Example 

In order to illustrate the SEM and to test its use in an optimization problem, we used the PARC 
code as described above to compute sensitivities and the used these sensitivities in a BFGS/Trust 
Region scheme to find an optimal shortened forebody simulator. As shown in Figure 4.32, data was 
generated by solving the Euler equations over the long forebody at a Mach number of 2.0. The 
objective is to find a forebody simulator with length one half of the long forebody and such that the 
resulting flow matches the data as well as possible, i.e., minimizes J along the outflow boundary. 

The shortened forebody was parameterized by a Bezier curve using two parameters. Thus, there 
are three design parameters p = (M$, Pi, P2). The algorithm used in this numerical experiment was 
based on using the PARC code to simultaneously march to the steady state solutions of the flow 
and sensitivity equations. We made no attempt to optimize the algorithm since the main goal was 
to test for convergence. 

The design algorithm proceeds as follows. First, an initial guess for the optimal design is made, 

i.e., we select a p° = ((Mg) , P?, P$). A good selection of initial parameters can be made knowing 

the operating conditions of the aircraft and some rough guess of the shape from the aircraft forebody. 
In our example, we chose M$ as the inlet Mach number from the computation which generated our 
data. The initial guess for the parameters were those used to generate the long forebody (although 
corresponding to different x-locations). These parameters, p°, are used to generate a grid, the inflow 
and forebody boundary conditions for both the flow (4.252) and sensitivity equations ((4.262) and an 

initial guess for both Q£
0)
 and (jfeo) ■ In our example, a rough guess for the flow field Q^0) uses the 

constant inflow boundary condition throughout the flow domain. Likewise, the initial guess for the 
inlet Mach number squared sensitivity is taken as the inflow boundary conditions (given in equation 
(4.267)) throughout the flow domain. The initial guess for the forebody parameter sensitivities is 
initially taken as zero (except on the forebody). The systems (4.280) and (4.283) are then solved 
simultaneously (in our case the left hand side matrix is the same for (4.280) as for the sensitivity 
equations (4.283), i.e. A = A') for the updated Q™ and (Q')^. The updated Q£° is then used 

to formulate (4.280) and (4.283) and solve for (Qh){n+1) and (jjO) " • Then one iterates until 

the desired convergence is achieved. In our example, the residuals, AQh = k?ln+1) - Q^l were 

converged to approximately 10~15 (in 800 time steps). The outflow data Qh and (-§-Q) are then 

used to compute J(p°) and V«7(p°). 
The optimization algorithm consisted of a BFGS secant method coupled with a "hook" step 

model trust region method. The initial Hessian was obtained by finite differences on VJ(p). The 
function and gradient information needed by the optimization algorithm is obtained by calling the 
modified PARC code with p = p. 

This algorithm was tested for the case where the forebody simulator was allowed to have the 
full length of the body generating the data. In this case the optimization algorithm produced exact 
data fits, i.e. J(p*) = 0 and it recovered the parameters used to generate the data. However, the 
more realistic test (constraining the length of the forebody simulator) also produced a convergent 
design and reduced the cost functional significantly. 

Figure 4.33 shows the flow field over the long forebody. Observe, that there is a shock in the 
flow. As noted in the next section, shocks can cause difficulties if one is not careful in the selection 
of an appropriate numerical scheme. High order schemes can produce (numerically generated) local 
minima that can cause the optimization loop to fail. This problem is avoided here because the 
numerical viscosity in PARC (required for stability) is sufficient to "smooth" the cost functional (see 
the next section for details). 

Figure 4.34 shows the shape and flow field of the optimal shortened forebody. This design was 
obtained after 12 iterations of the optimization loop. Figure 4.35 shows the 1st, 2nd, 3rd, 5th and 
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12"1 iterations for the x-component of momentum. The initial guess for the parameters were 

p° = ((M0
2)°,PllP2) = (2.0,0.10,0.15) 

and 
J(p°) = 3.2339. 

The "converged" optimal parameters are 

p* =p12 = (2.020,0.294,0.156) 

with 
J{p*) = 0.2229. 

Observe that the cost function was decreased by more than 93%. The optimization loops converged 
rapidly. For example, J(p3) =0.2334 and J(p5) = 0.2289. This is due to the fact that the shock 
location was found quickly. 

Note that although the flows are close, there is a significant error near the forebody. This can 
also be seen in the plots in Figure 4.36. It is worthwhile to note that the match is good considering 
the fact that the shortened forebody is constrained to be one half the length of the "real" forebody 
and that only two Bezier parameters are used to model T(-). It is also important to note that the 
shock is captured by the optimal design. In particular, observe in Figure 4.35 how the optimization 
algorithm "shapes" the shortened forebody so that the optimal shape has a blunt nose. This is 
necessary in order to generate the correct shock location at the outflow. 

4.6.4    Conclusions 

The numerical experiment above illustrates that the SEM can produce sensitivities suitable for 
optimization based design. There are a number of interesting theoretical issues that need to be 
addressed in order to analyze the convergence of this approach. Moreover, one should investigate 
"fast solvers" for the sensitivity equations (multi-grid, etc.) as well as develop numerical schemes 
that are not only fast, but produce consistent derivatives when possible. 

Finally, we note that we have conducted a number of timing tests which compute sensitivities to 
compare the SE method with the finite difference method. In particular, we observed that for the 
problem above (with three design parameters), the SE method needed only 58% of the CPU time 
required by finite differencing. When twenty design parameters were used, the SE method produced 
these sensitivities in about 38% of the time required by finite differencing. These early numerical 
results indicate that considerable computational savings may be possible if one extends and refines 
the basic SE method presented here. 
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Figure 4.31: Two Dimensional Forebody Simulator Problem 
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Figure 4.33: Long Forebody Flow Data 
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Figure 4.34: Optimal Short Forebody Design 
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Figure 4.35: Forebody Design Iterations 
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4.7    Asymptotically Consistent Gradients in Optimal Design 

Here, the sensitivity equation method for approximating optimal design problems, introduced in the 
previous section is further analyzed. Recall that the method couples a trust-region optimization 
algorithm with gradients obtained by approximating the sensitivity equation. It has been shown 
that this method has several advantages over standard design sensitivity based methods, especially 
for shape optimization problems. However, derivatives obtained by approximating the sensitivity 
equation are not necessarily consistent and hence the optimization loop can be based on inaccurate 
gradient information. In the present research, we introduce the notion of asymptotic consistency. 
Convergence of the approximate design problem is considered for the case where asymptotically 
consistent sensitivities are used. 

Optimal design problems can often be stated as finding parameters q from a prescribed set Q 
which minimize a design objective function J subject to a constraint on the states y of a system 
which is described by a differential equation. Namely, find q* which satisfies 

J(q*,y(q*)) =rmn J(q,y(q)) (4.284) 

subject to 

£(9.2/(?)) = 0. (4.285) 
Many approximation methods for this problem are developed by cascading a simulation scheme for 
the states in an optimization algorithm. Design sensitivities can be used to compute the objective 
function gradients efficiently. An issue that often arises in this development is that numerical ap- 
proximations of the sensitivities can produce gradients that are not the same as the gradient of the 
numerically approximated objective function, hence producing "non-consistent" gradients. Since the 
optimization algorithm is applied to the approximate model, it is usually assumed that the gradient 
which is provided to the optimization algorithm is the gradient of the approximate objective func- 
tion. However, when the approximation of the constraint becomes parameter dependent (e.g. in 
shape optimization problems), the gradient needs to capture the sensitivity of the truncation error 
of the approximation. To do this the derivative of the discretization (mesh sensitivity) is required. 

In last year's report, we introduced an efficient method for computing the gradient of the ap- 
proximate objective function which does not require a mesh sensitivity. In this method, an equation 
for the sensitivities (the sensitivity equation) is obtained by differentiating the infinite dimensional 
constraint equation, which is then discretized. This method, however, does not always produce 
consistent gradients and the question of convergence of the optimization loop does not have a simple 
answer. One might expect that if the gradients were "close enough" that a convergent algorithm 
could be obtained (this conjecture is supported by the numerical experiments presented in last year's 
report). This motivates our definition of asymptotically consistent gradients. 

In this work, we use a model optimization problem where the constraint is given by a one dimen- 
sional wave equation in order to illustrate these concepts. In particular, we provide a convergence 
result for the sensitivity equation method, which combines a trust-region optimization algorithm 
with asymptotically consistent gradients provided by approximating the sensitivity equation. Fi- 
nally, we use numerical simulations to demonstrate that the sensitivity equation approach produces 
viable gradients for this problem. 

4.7.1    Model Problem 

To illustrate the notion of asymptotic consistency in a shape optimization setting, we introduce a 
model design problem with the constraint given by the one dimensional wave equation. 

Problem 5 Given tf(-) e £2(0,1.25) and T>0, find q, e [.5,1.25] which minimizes 

J(q) = J   (y(T,x;q)-y(x)fdx, (4.286) 
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where y(t, x; q) is the solution of 

dt2 

subject to 

d2 

y{t,x\q) = a2-^y{t,x;q) 

y(t,0;q)=0,        y(t,q;q)=0, 

and      ^2/(0'x;9) 

(4.287) 

(4.288) 

(4.289) y(0,x;q)=f(x;q) 

on [0,T] x [0,q]. Here we assume that f(-;q) <E H&(0,q). 

Note that J is considered as an explicit function of q through the solution of the wave equation. 
The above problem is a shape optimization problem since the domain depends on the design param- 
eter q. Since we are interested in using computational techniques to solve this problem, we present 
the approximate problem below, beginning with an approximation of the wave equation. 

Finite difference methods for approximating PDE's often use a transformation to simplify the 
difference algorithm in the case of irregularly shaped domains or non-uniform discretizations. While 
it is not necessary to introduce a transformation to approximate (4.287), we do so to illustrate the 
more general case. Consider a transformation 

M : f — x, (4.290) 

mapping [0,1] -»• [0, q] and assume that M is an isomorphism from the "computational domain" 
[0,1] to the "physical domain" [0, q] in such a way that the discretization of the physical domain 
transforms to a uniform discretization of the computational domain. If we define 

f(*. 6 Q) = v(t,M(& q); q), (4.291) 

then the wave equation can be transformed to the following equation 

dt2' 

with 

for t € [0, T) and £ € [0,1]. Here we have assumed ^M(^, q) ^ 0 for 0 < £ < 1. 
A straight forward approximation scheme for w(t, f; q) is given. Consider a uniform discretization 

of [0, T] x [0,1] with K points in the i-direction and N points in the ^-direction, i.e. 

d2 

w(t,£;q)    =    a2—5w(t,Z;q) |AW 
-2 

(4.292) 

-*2^(t,t;q)-j^M(S;q) ^Mfoq) 
-3 

w(t,0;q)=0,         w(t,l;q)=0, (4.293) 

v>(P,t;q)=nM(t;q);q)        a nd        -w( <U; ?) = <>, (4.294) 

At = 
K-l 

and A£ = 
N-l 

Define 

w. t,3 

Mj    = 

M'<    = 

and M'l 

w((i-l)At,(j-l)A£;q), 
M((j-l)AZ;q), 

^M(V-l)A£;q) 

§pM(V-l)At;q), 

(4.295) 

(4.296) 

(4.297) 

(4.298) 

(4.299) 
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for (i,j) € {1,..., K} x {1,..., N} and consider the following finite difference scheme, 

Wj+i,j - 2wjj + Wj-hj = a2Wi,j+i - 2wjj + Wjj-i _   2wi,j+i -wi,i-iM» u 300) 

The boundary conditions are witl = witN = 0, for i = 1,...,K, wij = f{Mj-,q) and w0,j - w2,j for 
j = l,...,N. It can be shown that for a uniform discretization, i.e. 

M = q£, (4.301) 

the above scheme is convergent provided 

aAt 
9A£ < 1. (4.302) 

This places a restriction on the behavior of K relative to N. Thus we will define the approximation 
at the iVth level by 

The approximate solution yN to the wave equation is obtained by applying the inverse mapping 
A4-1 to wN. We now define the approximate optimization problem. 

Problem 6 Given data y and T > 0, find q* e [.5,1.25] which minimizes 

Jg
N(l) = X> (yN(T,xi;q) - y(xi))2 (4.304) 

i=i 

where y    is the approximate solution to the wave equation as described above. 

Note that the integral in (4.286) has been replaced by a quadrature {(ci,Xi)}f=1. Also note that 
yN depends on both q and M(-;q). 

4.7.2    Sensitivity Equation Method 
Design Sensitivities 

In order to solve approximate optimization problems such as the one above, a gradient based op- 
timization algorithm is frequently used. Thus, we need to consider methods for computing the 
gradient of j£. A straight forward approach is to use a finite difference approximation, i.e. 

dqJ«  {q) ~ A<? 
,;(^^^P^. (4.30Q 

Unfortunately, this approach is not practical in problems where the approximation of the PDE 
is computationally expensive. One way of alleviating the computational burden is to use design 
sensitivities, quantities which describe the influence of the design variables on the state variables. 
For example, we can directly compute the gradient by differentiating (4.304) as 

^Jg
N(q) = 2 £> {yN(T, Xi; q) - y(xt)) ^yN(T, Xi; q). (4.306) 

The quantity J^yN is the design sensitivity for the discretized state yN. 
There are several ways to compute this sensitivity.  As above, one might use finite differences, 

yielding the approximation 

|/'(r,,i,)»'ra*« + iff-»Kfr*". (4.307) 
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It is usually more practical to compute this approximation by using 

d                            yN(T,x + -§-M(M-l(x))Aq;q + Aq)-y
N(T,x;q) 

—y"(T,x;q)    «     2 _  (4.308) 

-^(T,x;q)^M(M-\x)) 

in order to avoid interpolating back to the unperturbed mesh. 
This approach has the advantage that a step size Aq can be selected using error estimates for 

y . However, it is as computationally expensive as computing finite differences on Jg . A more 
efficient approach can be obtained by differentiating the simulation scheme used to approximate the 
states. We demonstrate this using the scheme for the one dimensional wave equation given above 
(4.300). 

By (implicitly) differentiating (4.300) with respect to q, and defining 

Ui,j = -^Wij, (4.309) 

we achieve the following scheme for uN = {«ij}L \J(11V 

Uj+ij - 2uitj + Uj-ij    =    ^2"i,j+i ~ 2uU + ui,j-i     a2 ui,j+i - ui,j-i M„       (43101 
At2 ^

2
{M'3]

2 2Ae[^;.]3    j    K'   ' 
_2   2Wi,j+l - 2wi,j + wi,j-l   ^   , J, 

Af2[jw;.]3       d<i   j 

2AZ[M'3] 
d1 

2A£[M'j]
3    9q     3 

with boundary conditions given by 

for i = 1,...,K and 

«i,i = 0,        Ui,N = 0, (4.312) 

uij = gzf(Mj\ q) + fafiMf, Q)Q-MJ        and       u0J = u2,h (4.313) 

for j = 1,..., AT. The design sensitivity can then be extracted from 

by differentiating equation (4.291). 
Note that derivatives of the mapping M with respect to the parameter q are required to compute 

the last three terms in expression (4.310). In more complex problems, the evaluation of M can involve 
the solution of an elliptic PDE and thus be as expensive to compute as the state. Determining the 
derivative of this map would then also require applying the above technique to the mesh generation 
scheme that produces A4, adding additional expense. Frequently, the derivatives of this mapping 
are computed using some type of approximation. Besides the computational savings offered over 
finite differences, this discrete design sensitivity approach has another advantage in that it produces 
consistent derivatives. 

114 



Loosely speaking, a sensitivity approach produces consistent derivatives (with a given approxi- 
mation of the state yN) if it produces the sensitivities of the approximate state variables with respect 
to the design variables, -§^yN. Note that this implies that these sensitivities are used to compute 

o^J^ in equation (4.306). Thus, when consistent derivatives are used, the gradient which is sent 

to the optimization algorithm is consistent with the approximate objective function J^. That is, a 
sensitivity approach which produces consistent derivatives, such as the discrete sensitivity approach 
described above, captures the sensitivity of the mesh dependent round-off errors in J^. 

Another approach is based on approximating the sensitivity equation, obtained by differenti- 
ating the (continuous) state equation. For the model problem considered above, this amounts to 
differentiating the one dimensional wave equation and its boundary conditions. Thus if one defines 

s(t,x;q) = — y(t,x;q), 

then the sensitivity equation is given by 

-^s(t,x;q) = a —s(t,x;q) 

subject to 

s(t,0;q) = 0,        s(t,q;q) 

s(0,x;q) = —f(x;q) and 

d_ 
dx 

d_ 
8t 

y(t,q;<i), 

s(0,x;q) = 0 

(4.315) 

(4.316) 

(4.317) 

(4.318) 

on [0,T] x [0,q]. At this point, we are free to use any approximation scheme to find sN, however, 
for this example, we use the same simulation scheme which was used to determine yN. Thus, 
transforming the sensitivity equation using the change of variables 

v(t,Z;q)=s{t,M(t;qy,q), 

one obtains the equation 

d2 d2 

öf2u(t,£;g)    =    a2-^v(t,£;q) 

d_ 
-a2^v(t,C,q)i^M(^q) 

d_ 

d_2 

-\ -2 

M&q) 

(4.319) 

(4.320) 

d_ 1 -3 

M(£;q) 

with 
8 

v(t,0;q) = 0,        v(t,l;q) = -—w(t,l;q) ^M(l;q) 

ft fi 
v(0,£;q) = j^f{M(t;q);q)        and        ^«(0,£«) = 0 

on [0,T] x [0,1]. Defining 
«ij=v((i-l)A*,Ü-l)A^;g), 

the corresponding finite difference scheme is given by 

Vi+llj - 2vitj + Vj-ij   _    2Vij+l ~ 2vi,j + Vi,j-1 2Vi,j+l ~ vi,j-l 
At2 = a 

A£2 [M'j] 2A£[7W;.]C 
M", 

(4.321) 

(4.322) 

(4.323) 

(4.324) 

with boundary conditions given by wM = 0 and vi<N = --§^witN [M'N]  1 for i = 1,... ,K, vij = 

■j%f{Mj\ q) and v0J = v2j for j = 1,..., AT. 
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In a similar fashion as for the wave equation, the approximate sensitivities sN'M can be found 
by applying M~l to vN. We use the notation N, M to indicate the dependence of the approximate 
sensitivities on the approximation scheme for the state (N), and the approximation scheme for the 
sensitivity equation (M). Clearly, the above finite difference scheme requires less computational 
effort than (4.310), furthermore, no mesh sensitivities are required. 

It is important to point out that these two sensitivity approaches do not necessarily give the 
same values, i.e. 

d_ 
dq "(*0 (4.325) 

Therefore, the sensitivity equation approach does not necessarily produce consistent derivatives. 
Thus, one must address the problem of convergence of the optimization algorithm. Consider the 
derivative of the infinite dimensional objective function, 

OjJiq) = tj   (y(T, x; q) - y(x)) ^-y(T, x; q)dx. (4.326) 

Using a similar approximation of this expression to that used to approximate J(q), we arrive at 

(d    \N,M 9 /a   \N'M 

\d~qJ)        {q) = 2 E Ci (yN(T> x-9) - V(xi)) i^-yj        (T, xü q). (4.327) 

Therefore, the sensitivity equation approach offers an approximation of the gradient of J, and for 
a sufficiently fine discretization we might expect this gradient to be "close enough." This motivates 
our definition of asymptotically consistent gradients below. 

We can now make precise definitions. 

Definition 7 A sensitivity approach is said to produce consistent derivatives with respect to 
approximations N (for the states) and M (for the sensitivities) if 

ä-qJ^={a-qJ)g       <■>■ <4-328) 
This is exactly the case for the discrete sensitivity approach. 

Definition 8 A sensitivity approach is said to produce asymptotically consistent derivatives 
with respect to approximations N (for the states) and M (for the sensitivities) if it satisfies 

as the approximations N and M are refined. 

For the wave equation problem, if the exact solution yex{T, x; q) along with its first four derivatives 
in x are bounded on [0,1.25] and the mapping M satisfies 

0,        V?6S (4.329) 

—M(£;q)>a and 2M&q)<ß (4.330) 

where a, ß > 0 (which guarantees that the mesh on [0, q\ is refined with refinements of the compu- 
tational space, [0,1]), then 

|^(r,xi;g)-jV*(r,xi;g) 
and 

GO 
N,N 

{T,xi;q)-—ye'(T,xi;q) 0 

(4.331) 

(4.332) 

which implies that the sensitivity equation approach produces asymptotically consistent derivatives 
for this particular approximation of the sensitivity equation. 
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Trust-Region Optimization Algorithm 

Trust-region optimization algorithms are designed to converge quickly from initial parameters which 
are out of the superlinear convergence region. This is accomplished by minimizing the local quadratic 
model only over a region where this model is "trusted." A benefit of using these algorithms is that 
they provide a robust optimization algorithm even when there are model inaccuracies. In particular, 
Carter (ICASE Report 89-45) shows that the algorithms can converge when neither the function 
nor its gradient values are known exactly. Therefore, it seems natural to couple a trust-region 
optimization algorithm with gradients provided by approximating the sensitivity equation. We 
denote this strategy by the sensitivity equation method. A convergence result is provided below. 

Hypothesis 9 For the results below, we assume there exists a positive constant, L, (independent of 
N) such that 

_v,   . _v,   .   <L\qx-q2\        forallq1,q2eQo, (4.333) :4f ("> - S^te) dq   9 dq 

where, for a given qo € Q, Qo is an open convex set containing the level set 

C0 = {q€ Q\Jg
N(q) < Jg

N(q0)} . (4.334) 

Theorem 10 Apply the sensitivity equation method to an approximate optimal design problem of 
the form in Problem 6.   Assume Jg

N is continuously differentiate on an open convex set Qo and 
t \ N,M 

satisfies Hypothesis 9. Then, if the approximate gradient (Jj»7) is asymptotically consistent to 

the gradient -§zJg, the sensitivity equation method produces iterates {qk}kLi which satisfy 

\uami—Jg
N{qk)=Q. (4.335) 

fc—>oo  aq 

The proof of this theorem uses asymptotic consistency to obtain the error bound 

< < < 1, (4.336) m N,M a 

which can be satisfied by selecting sufficiently fine discretizations N and M. The result follows from 
Carter's theorem. 

4.7.3    Numerical Results 

In this section, we present numerical results which verify the asymptotic consistency results for the 
wave equation design problem in Section 4l7.2. In Problem 6, we consider y(x) = sin(27nr) and 
T = 1. The quadrature is given by a 5 point trapezoidal rule: (ci,xi) = (.1, .05), (02,22) = (-1) -15), 
(£3,^3) = (-li-25), (04,2:4) = (.1,.35) and (05,2:5) = (.1,.45). The numerical solution yN is an 

approximation of the wave equation (4.287) with a = 1 and f{x;q) = sin f^2)- For this problem, 

the exact solution of the wave equation is 

.   (2-KX\       /2Trat\ 
yex(t, x; q) = sin I   1 cos I   I , (4.337) 

and the exact solution of the sensitivity equation (4.316) is 

. . 2-KX       (2itx\       f2-Kot\      2-Kat .   {2nx\   .   {2nat\ 
sex(t, x; q) = —^-cos ^—j cos (^—J + -5-sin ^—J sin \—-j . (4.338) 

Thus, we can compute the gradient of the objective function (using quadrature) as 

\¥J)   ^) = 2^ci[yex(r,xi;9)-j/(xi)]sex(T,xi;9) (4.339) 
^   ^    '9 i=i 
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Figure 4.37: Error in Gradient Using Sensitivity Equation Approach: Uniform Mesh 

using the above expressions. It is easily seen that the optimal parameter, q«, is 1. 
We now plot the absolute error in the gradient calculations using the sensitivity equation and 

the discrete sensitivity approaches discussed earlier. First of all, we plot the absolute error in the 
objective function gradient corresponding to a uniform mesh, M(£;q) = £q. In Figure 4.37, we plot 
this for the sensitivity equation approach, i.e. 

&se — fc)M&) 
N,M 

(?) (4.340) 

for various levels of refinement (which satisfy the stability condition (4.302)).  In Figure 4.38, we 
present the corresponding plots for the discrete sensitivity approach, i.e. 

e-ds = (£')<•>-^ (4.341) 

One observes that the error in the gradient calculations is diminishing as the mesh is refined, leading 
to the conclusion that the gradients computed using the sensitivity equation approach are asymp- 
totically consistent. We point out that an example can be given where the sensitivity equation 
approach produces consistent derivatives, but -§zJ^{-) -/+ a^(')- 

The figures were constructed by evaluating the gradients for 101 equally spaced points in the 
interval [.5,1.25] (denoted by P). Asymptotic consistency is also seen by evaluating 

D(q) = 
d_ 

8q 

, Q      x N,M 

(4.342) 

at these points. Table 4.10 also clearly suggests asymptotic consistency. 
The same plots were made for a nonuniform mesh corresponding to M(£; q) = .7£(1 — £)q2 + £q. 

This mapping satisfies conditions (4.330), therefore we know that the sensitivity equation approach 
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Figure 4.38: Error in Gradient Using Discrete Sensitivity Approach: Uniform Mesh 

Table 4.10: Asymptotic Consistency for Sensitivity Equation Approach 

N 11 21 31 41 51 61 71 81 91 

K 21 41 61 81 101 121 141 161 181 

maxpD .7138 .2300 .0967 .0507 .0336 .0227 .0169 .0131 .0105 
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Figure 4.39: Error in Gradient Using Sensitivity Equation Approach: Non-Uniform Mesh 

produces asymptotically consistent derivatives.    Figures 4.39 and 4.40 show that the gradients 
( \N,M , s 

§^J)        and -Q^Jg   are both converging to \ß-q j)   which verifies asymptotic consistency. 

4.7.4    Conclusions 

In this section, we presented the sensitivity equation method for optimal design. This method 
is efficient and does not require mesh sensitivities. Convergence of this method was studied by 
introducing the notion of asymptotic consistency. We demonstrated these ideas using a model 
design problem with a constraint given by the one dimensional wave equation. 

The sensitivity equation method has been successfully used to approximate optimal design prob- 
lems corresponding to shape optimization of a forebody simulator (where the constraint is given by 
the two dimensional Euler equations) and a channel design problem (where the constraint is given 
by the two dimensional incompressible Navier-Stokes equations). 
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Figure 4.40: Error in Gradient Using Discrete Sensitivity Approach: Non-Uniform Mesh 

121 



4.8    Reduced Hessian Methods for Design 

The purpose of this study is to implement sequential quadratic programming (SQP) algorithms to 
find solutions to the inverse design problem for a one-dimensional nozzle flow. The flow of the fluid 
within the nozzle is governed by the Euler equations, and is transonic in the sense that the flow 
is assumed to be supersonic at the inlet to the nozzle, and is subsonic at the outlet, with a shock 
existing in the flow. In a nonlinear programming (NLP) framework, the state variables are the 
(discrete) flow variables, which are then governed by the (discretized) Euler equations. The control 
variables are the design parameters that shape the area of the duct. The problem is to find an 
"optimal" shape for the duct, which will match a desired flow profile within the duct. 

SQP methods are iterative, and treat controls and states as independent variables. The nonlinear 
governing equations, in this case the Euler equation, are enforced as part of the constraints and are 
only satisfied in the limit, as the iteration converges to a feasible solution. The difficulties in the 
application of SQP methods to problems, such as the one described above, are the occurence of 
shocks and, for two or three space dimensions, the size of the problem. We use an SQP framework 
based on a reduced Hessian that exploits the problem structure. These SQP methods are well suited 
for large scale optimal control problems. The SQP methods described there include a trust region 
globalization to guarantee convergence of the iteration from arbitrary starting points and to enhance 
its robustness. Moreover, these methods use an affine scaling interior point strategy to handle the 
bounds on q. The SQP methods incorporate the general structure of optimal control problems like 
(4.415) and allow for inexact solutions of the quadratic subproblems. In particular, structure in the 
linearized state equation can be easily incorporated. Moreover the implementation of these SQP 
algorithms allows the use of weighted scalar products. 

The realm of computational fluid dynamics (CFD) offers a number of methods for solving the 
above state equations, which can capture the shock implicitly (e.g. Godunov scheme). The aim 
is to study the effect of some of these schemes on the optimization method. This design problem 
is difficult to solve numerically, because the duct flow has a shock. Many good numerical shock 
capturing schemes, such as the Godunov scheme have low continuity properties. On the other hand, 
efficient numerical optimization schemes require sufficiently smooth cost and constraint functions. 
A straightforward combination of off-the-shelf discretization schemes for the flow equations and 
of off-the-shelf optimization methods often leads to very unsatisfactory results. In our case, we 
found that the SQP method failed for converge for cases when the initial guess is far from the 
optimal solution. The failure of the SQP method is related to the presence of shocks in the flow. In 
particular, if shock capturing schemes with low continuity properties, like the Godunov scheme, are 
used, then the SQP method, which is designed for smooth problems, behaves poorly. This seeming 
incompatibility of good shock capturing schemes for the discretization of the flow equations and 
efficient SQP methods for the solution of the optimization problem motivated the study of a shock 
fitting scheme. The important extension is that we include the shock location as a state variable. 
The formulation gives a sharp shock and, since the shock location is an explicit variable, the map 
from the design parameters to the flow is differentiable. In this section, we give a rigorous analysis of 
the infinite dimensional design problem including existence of optimal designs, existence of Frechet 
derivatives, and existence of Lagrange multipliers. In particular we will show that the co-state 
is discontinuous at the shock location, unless the target velocity can be matched perfectly. We 
discuss the discretized design problem and investigate the relation between the finite dimensional 
problem and the discretized one. The careful study of this relation gives valuable insight and reveals 
information that is shown to be important for the performance of the optimization algorithm. 

4.8.1    One-Dimensional Nozzle Flow 

The problem we consider is a one-dimensional flow in a duct. The flow is governed by the Euler 
equations 

fx+G = 0, 0<x<l, (4.343) 
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where, 
/ 

T: 

(pu)A 

(pu2 + p)A 

y (PE + p)uA J 

\ (    o    \ 
,   G = -pAx 

) {     °     / 
Standard notation has been used, with p being the fluid density, u the velocity, E = e + u2/2, where 
e is specific internal energy, and p is the fluid static pressure. The subscript x denotes differentiation 
with respect to the position along the streamwise direction, x, and A(x) is a given distribution 
function of the cross-sectional area, which is assumed to be at least piecewise differentiable. It is 
assumed that the cross-sectional area A(x) of the duct along the streamwise direction x is absolutely 
continuous and monotonically increasing: 

A(x)>0,    Ax{x)>0,    ig[0,lj. (4.344) 

Under given conditions, equation (4.343) can be reduced to a single ordinary differential equation 
in u. We obtain, 

(f(u))x+g(u,A) = 0, (4.345) 

where 

f(u) = u + H/u,    g{u, A) = -^(7u - H/u), (4.346) 

and where 

7=(7-l)/(7 + l),    H = 2Hj 

are given constants. The constant 7 > 1 is the gas constant (for air, 7 = 1.4), and the constant H 
is the total enthalpy. The flow is supersonic for u > u» = VH and subsonic for u < it». 

In addition, we impose the following boundary conditions 

u(0) = Uin,      u(l) = Uout. (4.347) 

We choose boundary data uin > u* > Uout so that a solution u of (4.345), (4.347) has a jump from 
supersonic to subsonic at some point xs. At the shock location xs the flow is required to satisfy the 
Rankine-Hugoniot relation 

f(u{xs-)) = /(«(*,+)) (4.348) 

or, equivalently, 
u(xs~) ■ u(xs+) = H. (4.349) 

As usual, u(xs-) = lim/l_>0+ u(xs - h) and u(xs+) = lim/l_0+ u(xs + h). Equation (4.345) along 
with the above conditions (4.347) and (4.348) defines the flow profile. 

For sake of completeness, we review some existence results. While the existence result will not 
be needed in this form, the arguments applied for its proof give some important insight into the 
structure of the problem. 

First we consider the initial value problems 

(f{u))x + g(u,A) = 0,    u(0) = Ui, (4.350) 

and 
(/(«))x + g(u, A) = 0,    «(1) = txout- (4.351) 

Since fu{u) > 0 for u > vH, there exists a solution of (4.350) in a neighborhood [0,XL) of x = 0 
provided uin > VH. If uin € {VH, \/2H) and u{\) = uout < VW, then (4.344) and the definitions 
of /, g imply that 

[   > 0   x = 0, 
ux(x) = -g(u(x),A{x))/fu(u{x)) 

<0   x = 1. 
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Figure 4.41: Sketch of the velocity as a function of the area. 

Using the continuity of the solution and bootstrapping, we can deduce that unique solutions of 
(4.350) and (4.351) exist on some interval [0,x/,) and (xR,l], respectively. Moreover, the solutions 
are monotonically increasing and decreasing, respectively. It is easy to verify that the solutions are 
implicitly given by 

A{X)u{x)(2H-u\X))r = [ KL'   Xe [°'IL)' (4.352) v J      [ KR,   xe(xfl,i], 
where r — 1/(7 - 1) and where the constants KL,KR are determined from .4(0), u(0) = um and 
A(l), u(l) = uout. Due to the restrictions on the boundary conditions and due to the fact that 
A(x) > 0, the constants KL,KR are positive. Equation (4.352) defines two functions AL(u),AR(u). 
It can beeasily verifiedthat these functions have a minimum at u* = y/H and are strictly monotone 
on (0, VE] and on [SB, V2H). Thus, the initial condition uin € (SB, y/2H) guarantees that the 
solution u of (4.350) exists on [0, xL) = [0,00). The point xR is the uniquely defined point satisfying 
A(xR) = AR. The situation is sketched in Figure 4.41. 

Using (4.349), (4.352), and the continuity of A, the shock position xs can be characterized by 

.»(«(*,-» = ±uM (JH - «■(*.-))' - J--^ (2fl - (-Z-^yy = 0.       (4.353, 

It is easy to see that limu_>/2H_ w(u) < 0. Hence, given A there exists a boundary conditions 

uin € (VH,y/2H), uout e (0,VH), i.e. KL, KR, such that limu_>tlln+ w(u) > 0. In this case there 
exists u(xs-) such that w(u(xs—)) = 0. Since the area A is monotonically increasing, the shock 
condition can then be computed from (4.352). Thus, we can conclude the following result: 

Theorem 11 Suppose the area function satisfies (4-344)- Then there exist boundary conditions 
uin € (VH,y/2H) anduout € (0, VH) such that the equations (4-345), (4-348), and (4-347) admit 
a unique solution u which is supersonic and monotonically increasing on (0,xs) and subsonic and 
monotonically decreasing on (xs,l). Moreover, it obeys the inequalities 

VH<uin<    u(x)    < mm{V2H,H/uout\,    ie[0,i,), 

«out <    u(x)    < H/um < VH, ie(i„l]. 
(4.354) 
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Figure 4.42: Grid Setup 

The problem we are generally interested in is the design problem, wherein we are given some 
desired velocity profile, and the aim is to determine the area profile for the duct that will "most 
closely" generate such a flow. The problem can be stated thus: 

min J = /  (u(x) - ud{x))2dx (4.355) A h 
subject to constraints (4.345), (4.347) and (4.349). 

The nature of the duct flow solution closely resembles the flow phenomena for two-dimensional 
inviscid flow over an airfoil. The one-dimensional transonic duct flow problem, hence, serves a useful 
purpose in that it provides valuable insight into the nature of the relatively complex problem of 
airfoil design. 

4.8.2    Shock-Capturing Scheme 

In the finite dimensional case, we discretize the flow, and use the discrete values of the flow at various 
grid points as our state. The domain (0,1) is divided into N equispaced grid points, as shown in 
figure 4.42, yielding N subdomains, each of which must satisfy the state constraint. We have, 

y = U={Uj}      j = l,...,N 

We use a cell-centered finite volume formulation. For the jth cell (subdomain), we have, 

t    ^ fj+l/2 ~ fj-1/2 
Ax 

This yields the following constraints 

C(j)=fj+1/2~x
fj-1/2+9j       j = l,...,N (4.356) 

Using first order accurate interpolation, we have, for the supersonic region 

fj+i/2 « fj\ and /j-i/2 = fj-i,       Uj > us 

and, for the subsonic region 

fj+i/2 = fj+i; and fj-1/2 = fj,       Uj < us 

where, us = vH is the sonic velocity. We use a Godunov scheme to capture the shock. This uses 
the following logic, 

if ( (UJ > us) & (uj+i < us) )    then 

fj+i/2 =max(/j,/j+i) 

endifelseif   ( (UJ_J > us) & {UJ <us))    then 

fj-1/2 = max(/j_i,/j) 

endif 
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Figure 4.43: Target Data 

which implicitly forces the shock condition, f(u(xs-)) = f(u(xs+)). The above system of equations 
yields a tridiagonal matrix for the Jacobian of the constraints. The objective function we use is, 

N 

J = $>» - ui d\2 (4.357) 
t=i 

Numerical Results 

The area profile is parametrized in terms of A(0),AX(0),A(1) and Ax(l). We use a cubic hermite 
polynomial, defined by the afore-mentioned parameters, to represent the area distribution. We use 
the following values, to compute a target solution, ud: 

u(0) = 1.299 

A(0) = 1.05 

Ax(0) = 0.1 

u(l) = 0.506 

A(l) = 1.745 

Ax(l) = 0.1 

The target flow solution and the area profile are shown in figure 4.43. For the SQP runs, we use the 
following as our control variables: 

q=[Ax(0)   Ax(l)} 

Results, comparing the computational effort using both a full and reduced SQP algorithm, for 
a grid size of N = 400, are given in Table 4.11.   An initial guess of Ax(0) = Ax(l) = 0.09 is 
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used for the parameters, and the initial flow variables are estimated to be equal to the target data. 
Additionally, results obtained using a Black-box method are also shown, for comparison. The Black- 
box method uses NLPQL, an SQP-based algorithm, with finite central differencing used to obtain 
gradient information. The constraints, C — 0, are solved using Newton's method, for a given area 
distribution. It was found, overall that the number of discrete evaluations of the flux, /, made the 
biggest contribution to the overall computational effort,and this has been used as a benchmark in 
quantifying the computational effort. 

Table 4.11: Comparison of Computational Efforts 

Blackbox Full SQP Reduced SQP 

# QP Iterations 5 6 ,    7 

# Flux Evaluations 7897456 270505 212588 

# Constraint Evaluations 2224 29 36 

# Gradient Evaluations 2192 81 62 

It can be seen that the Black-box method is outperformed by the other methods. While the 
reduced and full SQP schemes consume about the same amount of computational time, the Black- 
box scheme requires about 10 times as much time to produce a converged solution. While the reduced 
SQP method outperforms the full SQP procedure in this case, it was found that, as the initial guess 
for the parameters is moved further away from the optimal value, the reduced SQP method requires 
far more iterations to converge. The reduced SQP method is not very robust, compared to the 
other two methods. Analysis showed that the difficulty arises from the lack of differentiability 
of the shock-capturing scheme. Using such schemes yields ill-conditioned Jacobians for the state 
constraints, which produce spikes in the numerical solutions. This hinders the convergence of the 
algorithm. An alternative, which is discussed in the following section, is to use a shock-fitting 
scheme. 

4.8.3    A Shock Fitting Scheme 

In the following we will denote the logarithmic derivative of A by q, 

With this substitution the state equation is given by 

(f(u))x+g(u,q) = 0, (4.359) 

and (4.349), (4.347), where 
g(u, q) = q (71t - H/u). (4.360) 

Note that instead of introducing another symbol we redefine g.   Unless stated otherwise, in the 
following g(u, q) is always given by (4.360). 

Trivially, q is determined by A. On the other hand, if the area is known at some point, for 
example, if A(0) > 0 is given, then A(x) can be computed from q by integrating (4.358): 

A(x) = exp I ln(A(0)) ■ j   q{t)dt\. (4.361) 

The function A{x) defined by (4.361) is absolutely continuous and, therefore, differentiable almost 
everywhere. From now on, we assume that J4(0) > 0 is given. 
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For a rigorous treatment of the dependence of the solution upon parameters, we have to transform 
the ODE, the shock condition, and the boundary conditions. We denote the velocity left of the shock 
by UL, the velocity right of the shock by uR, and, as before, the shock location by xs. If we perform 
the variable transformation x —► xs£ left of the shock and x —► 1 - (1 - xs)£ right of the shock and 
if we set 

UL(0 = U(*.0>    Uä(0=«(1-(1-X,)0, (4-362) 

then we find that 

J£«i(0 = x. J£«(*.0.     ^«ä(0 = (*. - 1) £«(1 - (1 - *.)0- (4-363) 

Thus, in the new spatial variables the ODE (4.359), the shock condition (4.349), and the boundary 
conditions (4.347) become 

(f(uL)h+x3g(uL,qL)    =    0,    £€[0,1], (4.364) 

(f(uR))i + (xs-l)g{uR,qR)    =    0,    {€[0,1], (4.365) 

/(«/.(I)) = /(Uä(1)), (4.366) 

and 
«1,(0) = uin,    uÄ(0) = «em. (4.367) 

The functions qL and qR in (4.364), (4.365) are defined by gL(£) = g(xs£) and qR(£) = q(l-(l-x3)£), 
respectively. In the following we view qL and qR as independent variables. To guarantee that the 
corresponding area function is monotonically increasing we have to impose the conditions 

<7L(£)>0,    qR(0>0,    £€[0,1]. 

The control problem we are interested in is the design of an area function generating a flow that 
best approximates a desired velocity in the least squares sense. Given a desired velocity ud € L2(0,1) 
and a point xs we introduce 

ud
L(xs;£) = ud(xsO,    ud

R(xs;0 = ud(l - (1 - xs)£). (4.368) 

With the transformations (4.362), (4.368) the objective function is given by 

/ (u(x) - ud(x))2 dx   =     f * (u(x) - ud(x))2 dx+ f (u(x) - ud(x))2 dx 
JO JO Jxa 

=   x, [ («L(0 - ud
L(xs; £))2 df + (1 - x.) f (uR{i) - <(xs; £))2 d£- 

Jo Jo 

Thus, using the transformation introduced in the previous section, the control problem we have to 
solve is given as follows: 

Minimize J(uL, uR, x„ qL, qR) = ~ j (uL(£) - ud
L(xs; £))2 d£ + ^—^- j (uR(0 - <(xs; £))2 d£ 

(4.369) 
subject to the equality constraints 

(f{uL))i+xsg(uL,qL)    =    0,    £€[0,1], (4.370) 

(/(««))«+ (S.-1M«ä,«ä)    =    0,    £€[0,1], (4.371) 

f(uL(l)) = /(«ä(1)), (4.372) 

uL(Q) = uin,    Ufl(0) = Uout, (4.373) 
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and to the inequality constraints 
0 < xs < 1, (4.374) 

0< flow <<?£,(£), 9H(£)<<7upp,    ee[0,l]- (4.375) 

We assume that the boundary conditions obey 

uin € (y/S, V2H),    uout € (yftf, \fl). (4.376) 

The states are given by the triple (UL,UR,XS) and the controls are (<?L,<7fl)- The equations 
(4.370), (4.371), (4.372), (4.373) are the state equations. 

As the control space we use 
Q = L~([0,l])xL~([0,l]) 

and we denote the set of admissible controls by 

Qad = {{qL, qR) e Q | 0 < qiow < qL(£), qR(£) < qupp  a.e. in [0,1]}. 

The set of admissible controls is closed and convex. By a solution to (4.370) (or (4.371)) we mean 
an absolutely continuous function which satisfies (4.370) (or (4.371)) almost everywhere on [0,1]. 

Using the arguments applied in the previous section we can establish the following result. 

Lemma 4 Suppose that uin and uout obey (4.376) and that (qL,qn) € Qad-   If (UL,UR,XS) with 
xs e [0,1] is a solution of (4.370) to (4.373), then 

0 < «out < uR(0 < — <VH <uin< uL(0 <  < V2H,    £ € [0,1], (4.377) 
Win Wout 

and there exists c > 0 which depends only on Ujn, uout and 9iowi9upp such that 

\(uL)dO\ < c,    |(uR)?(OI < c     o.e. on [0,1]. (4.378) 

Proof:     The estimate (4.377) follows from the monotonicity properties of the solution and the 
Rankine-Hugoniot relation written in the form (4.349). See also the discussion in Section 4.8.3. 

From (4.370) and (4.371) we find that 

(vr\.(f\    -       xs9{uL(0,qL(Q) xsqL(Q(yuL(Q - H/uL(Q) 
{UL)m    ~ /„(UL(0) 1 - H/uKO      a.e.on[0,l], 

{*m    ~ 7ÄÖ)   ~ 1 - H/ul(0      a* on [0,1]. 

The function H/u - ^u = (7/u)(2if - u2) is monotonically decreasing in u and positive for u e 
(0, V2H). Using the estimate (4.377) it can be seen that 

\(„   \   (f\\ <-  9uPP(H/uin - jUin) gupp(^/Wout-7Uout) r„   tl 
I(WL)C(UI < : S7T2 '     Ku«)e(OI ^ ———TTu—i      a-e" on t0'1!- 

1       -"/"in "in/-" _ l 

A 

Thus, the state space appropriate for this design problem is given by 

U = W1'00^, 1]) x W1'00^, 1]) x M 

In the following we simply write W1'00, L°° instead of W1>oo([0,1]), L°°([0,1]) and we set 

IMIoo =   eSSSUp[0il]|g(0|,       IH|l,oo = ||u||oo + ||uel|oo- 

We note that the shock location xs enters the design problem in the differential equations (4.370), 
(4.371) and in the objective function, see also (4.368). The functions ui,uR,qL, and qR do not 
depend explicitly on xs, but are implicitly coupled with the shock location through the design 
problem, in particular through (4.370) and (4.371). 
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Theorem 12 Suppose there exist xs € (0,1) and u € (u\n,H/uout) such that 

0 < 9iow < min{V "' ^- , -^ -fl ^ 
1   x.(^--7uin)        (l-^)(£r-7«out)J 

(4.379) 

and 

(l - 7) (« - «i„)        (^- - l) ff - "out) -. 
9upp > max {i-^        , ^=2 A« ;\ (4.380) 

Tften i/iere exzste on optimal control {q*L,qR) € Q of (4-369) - (4-375). 

Proof:    First, note that the conditions (4.376) guarantee that the min in the condition (4.379) is 
positive. 

(i) Existence of feasible points: For given xs € (0,1) and ü € (um, H/uout) we set 

/ ff \ 
UL(0 = «in + f(ü - 1tin),      Ufl(£) = «out + f(— -«out), 

'H 

Ü 

and 

and 

(i-^gj)(»-^) (i-^ö)(#-w) 

xs (7«L(0 - A) (x, - 1) (TUA(0 - ^) 

By construction, (uL,UR,xs,qL,,qR) satisfies the constraints (4.370) to (4.374). 
The function H/u — 7« = (iy/u)(2H — u2) is monotonically decreasing in u and positive for 

u € (0, y/2H). Notice that (4.376) implies the inequalities ü < y/2H and H/u < y/2H. Therefore 
the functions qL,qii obey 

(l-£)(ö-«in) (l-w)(Ö-"in) (l-7)(«-ö) 
 -^  < <7L(£) < —r-  = - rr  

S»(^-^U!") **(f-7«) x«(f-7«) 

(*-0 (*---) , (ar(±-')(*-■-) 
— -—5—:—- s gMs; s 7 rr—• 
U-*•)(;£-7«out) (l-xs)(«-7f) 

Thus, qL,qR also satisfy the bound constraints (4.375). 
(ii) Existence of optimal controls: This part of the existence result uses standard techniques. Let 

{(«2, «fl,x™, <$,<$)} be a minimizing sequence. 
By Lemma 4 the states obey (4.377) for all n and the derivatives of «J, uR are uniformly bounded. 

Therefore, the sequence {(«£,«#)} is equicontinuous and, by the Arzelä-Ascoli theorem, relatively 
compact in C([0, l])2. Thus, there exists a subsequence, for simplicity also denoted {n}, with 

(ul,uR)    ->    (ul,uR)     inC([0,l])2, 

(<?M)    -    (QUR)     weak-* in (L°°)2, 

Consider the set Sk = {q*L < (flow - 1/&}- Let m(Sk) be the (Lebesgue) measure of this set 
and let xsk be the characteristic function. If m(Sk) > 0, then the definition of weak-* convergence 
implies that 

m(Sk)qlow< f  ql(0xsk(0dS^ f ?2(0 XsAZW < m{Sk) (9low - 1/fc), 
Jo Jo 
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which is a contradiction.  Hence m(Sk) = 0 for all k.  With {q*L < qiow} = UkewSk we find that 
m({<?L < 9iow}) = 0. Using analogous arguments we can deduce that (q*L,q*R) € Qad- 

Since u2,uR satisfy (4.372), u*L,u*R satisfy (4.372). Moreover, using (4.377), 

Hence, by taking the limit in 

un
L(0 = nin-Joql^ «  _ sj(7u2 - H/ul) 

dC 
/o ^   i-^/K)2 

we find that 

■4(0 —jf«^^* 
i.e. u£ satisfies (4.370). Similarly, we can show that u*R satisfies (4.371). 

Thus, {u*L, uR,x*,q*L,qR) is a solution to the optimal control problem. A 

Prechet Differentiability 

In the following we view UL,UR,XS and qL,qR as independent variables. Since the shock location is 
treated explicitly, Prechet differentiability of the objective function and the function of constraints 
can be established. In this section we introduce the mathematical framework that permits us to 
prove Prechet differentiability, derive the first derivatives and we prove the continuous invertibility 
of the partial Prechet derivative of the constraints with respect to the state variables. The latter 
property is important to show that constraint qualifications hold and is essential in SQP methods, 
in which one has to solve linearized state equations. 

We introduce the operator 
C:UxQ->C, (4.381) 

where 
C = L°° xL°°x M3. 

The operator C is defined as follows: For r = (rL,rR,rs,rin,rout) € C the equality 

C(uL,uR,xs,qL,qR) = r 

holds if and only if 

(f(uL)h+xsg{uL,qL)    =    rL,    £€[0,1], (4.382) 

(/(«Ä))c + (af.-l)s(«Ä,9Ä)    =    rR,    £€[0,1], (4.383) 

/(UL(1)) - /(Uä(1)) = rs, (4.384) 

and 
uL(0) - um = rin,    Ufl(0) - ttout = rout. (4.385) 

The equation C(uL,uR,xs,qL,qR) = 0 is equivalent to (4.364), (4.365), (4.366), (4.367). 
To be able to evaluate (4.382) and (4.383) the velocities have to satisfy ui{x) ■£ 0, uR(x) jt 0 

for all x€ [0,1]. 
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Theorem 13  The nonlinear operator C : U x Q —> C is Frechet differentiate at any point 
(uL,UR,xs,qL,qR) eWxQ satisfying UL(X) ^ 0, UR(X) ^ 0 for all x e [0,1].   The partial Frechet 
derivatives are given by 

'        UU{UL)üL)Z + xsgu(uL, qL)ÜL + xsg(uL,qL)        » 

C(uL,uR,x,)(uL,UR,x3,qL,qR)(üL,ÜR,xs) 

(/«(ufl)üfi)? + (xs - l)gu(uR, qR)ÜR + xsg(uR, qR) 

fu(uL(l))uL(l) - fu(uR(l))üR(l) 

üL(0) 

ÜR(0) 

and 

c(qL,qR)(uL,UR,xs,qL,qR) {qL,qn) = 

i        xagq(uL,qL)qL        » 

(xs - l)gq(uR,qR)qR 

0 

0 

0 
\ / 

Proof:   To prove the differentiability of C with respect to (UL, UR,XS) we have to show that 

C(uL + uL,UR + ÜR,x3 + xs,qL,qR) - C(uL,uR,xs,qL,qR) 

-
C

(UL,UR,X,)(UL, UR, xa,qL, qR)(üL,ÜR, xa) 

For the first component corresponding to the equation (4.382) we obtain 

.(i [UL,UR,XS] ilw). 

(f(uL + UL))£ + (x3 + xa)g(uL + uL,qL) - (f(uL))z - xsg(uL, qL) 

-(fu{v>L)ÜL)e - xsgu(uL, qL)uL - xag(uL, qL) 

=    (f(uL + uL) - f(uL) - /U(WL)ÜL)? + xs [g(uL + uL, qL) - g(uL, qL) - gu(uL, qL)üL] 

+xs [g{uL + uL,qL) - g{uL,qL)] 

=    (I  (fu(uL + tüL)-MuL))üLdtJ   +xso(||üL||00) +x, 0(||UL||OO) 

=       /     (fuu(UL + tUL)(uL + tUL)s - fuu(uL){UL)z)üL + (fu(uL + tUL) - fu(uL)) (uL)£ dt 
JO 

+xs O(||üL||OO) + Xa 0(\\ÜL\\oo) 

=     °(llÜilll,oo) +Xs O(||"L||OO) +Xa O^llfiilloo). 

Similar estimates can be applied to show analogous results for the equations (4.383) and (4.384). 
This proves the differentiability of C with respect to (UL, UR, XS). 

The differentiability of C with respect to (qL,qR) follows easily, since the function g in (4.360) 
is linear in q. A 

The following result concerns the invertibility of the partial Frechet derivative 
C(UL,UR,X,){UL, UR, xa,qL, qR). 
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For given (uL,uR,xs) 6 U, {qL,qR) € Q, and (rL,rR,rs,rin,rout) 6 C we consider the system 

(/u(wi)ÜL)c+xsffu(uL,9L)üL+fs5(uL,9L)    =    rL,    £6 [0,1], (4.386) 

(/«(«A)««)« + (a:. - 1)SU(UB,9fl)"i? + xsff(uß, gÄ)    =    rR,    £ 6 [0,1], (4.387) 

/«(«L(1))UL(1) - /U(«ä(1))«ä(1) = r„ (4.388) 

and 
«L(0) = r-in,    uR(0) = rOUf (4.389) 

Theorem 14 (%) Suppose that (uL,uR,xs,qL,qR) eU x Qad is a point satisfying 

M0*o,   miO^^S,   V£e[o,i],       i = L,R,. 

If 

then for every (rL,rR,rs,rm,rout) 6 C the system (4-386), (4-387), (4-388), (4-389) admits a unique 
solution {üL,üR,XS) 6 U which depends continuously on (rL,rR,rs,rin,rout). 

(ii) If, in addition, there exists constants 6, A with 0 < 6 < A such that the point (uL, uR,xs,qL,qR) 
obeys 

«<«i(0<A,    MO - y/B\ > 6,    Vf 6(0,1],        i = L,R, 

and 

ljf-(-/s7^51*) °<—>-»(-/' (x-fXT"^) *-«>* 
tfjen f/iere exists a constant K dependent on 6, A, but independent of (uL,uR,xs,qL,qR) such that 

\\(üL,üR,xs)\\u < K\\(rL,rR,rs,rin,rout)\\c. 

Proof:    (i)^ First we note that since W1,o°(0,1) C C([0,1]), there exists 6 > 0 such that u4(£) > <5, 
|tti(0 - V3?| > 6, for all £ 6 [0,1], i = L, R. 

The equation (4.386) is equivalent to 

(/«(«L)üL)C + Xs9f2uL)L) (MV
L)üL) = rL-xsg(uL,qL). (4.391) 

>S, 

Using the integrating factor 

«<«—Of**»52*)- 
the solution of (4.391) with initial condition UL(0) = n„ is given by 

"L^) = +AiL(0/u(uL(0) (rin/u(UL(0)) + / ML(*)[rL(0-*.S(«L(«).9i.(*))]*) •       (4-392) 

Similarly, one can show that the solution of (4.387) with initial condition uR(0) = rout is given 
by 

"«(0 = ßR(z)fu(UR{0) (r°ut^(u«(°)) + J   MA(0M«) - x,g(uR(t),qR(t))]dt j ,       (4.393) 
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where 

IIDIF) = pyn I   /    - — *■«({)—pijf^-y:»-"''»* 
Inserting (4.392), (4.393) into (4.388) yields 

jf-*(-/,5feMi!a*)w)-*-^«('»l- 
f - (- /' (I,"1^!'MW> "S) '-«> - *.«-<o.«(.))i * 

r   /U(«L(0))  , 
'in ,.,.,       ~r 

r       /u(Ufl(0))    , 
out   A*ä(1) 

(4.394) 

If the inequality (4.390) is valid, then (4.394) can be solved for xa. This proves the existence and 
uniqueness of the solution. 

The continuous dependence of (üL,üR,xs) € U upon (rL,rR,rs,rin,rout) € C follows from the 
equations (4.392), (4.393), (4.394). 

(ii) The assertion follows from equations (4.392), (4.393), and (4.394). A 

Corollary 1 If {uL,uR,xs,qL,qR) e U x Q is feasible, i.e. it satisfies the constraints (4.370) to 
(4-375), and if there exists 6 > 0 with 

>S, if ■*(-/' ^*) "-^-f(i--^rr^) **•*>* 
fften there exists e> 0 suc/i tfiai /or a// (UL, UR,XS) €U, (qL,qR) e Q with 

\\(uL,uR,xs)-(ÜL,üR,xs)\\u <e,     ||(9L,9Ä)-(gL,9ß)||e <e 

and/or a// (rL,rie,r„rin,rout) € C tfie system (4-386), (4-387), (4-388), (4.389) admits a unique 
solution (üL,üR,xs) e U. Moreover, there exists a constant K independent of (üL,üR,xs,qL,qR) 
such that 

\\(üL,üR,xs)\\u < K\\(rL,rR,rs,rin,rOVLt)\\c. 

Proof:   The solutions uL,uR satisfy (4.377). Hence, the assertion follows from Theorem 14(ii). A 

Prom the definitions of / and g one can see that the Frechet derivative of C is Lipschitz- 
continuous for all uL,uR with uL(£),ufl(£) > u > 0 for all f e [0,1]. Moreover, C is even twice 
Frechet differentiable if UL,UR> 0. 

To prove the Frechet differentiability of the objective function we have to keep in mind that the 
desired velocity depends on xs, cf. (4.368). Therefore differentiability with respect to xs can only 
be guaranteed if the desired velocity ud is sufficiently smooth, a fact that will be addressed again in 
the numerical examples section. 

Theorem 15 7/ the desired velocity ud is differentiable with absolutely continuous derivative, then 
the objective function J is Frechet differentiable. The partial Frechet -derivatives are given by 

JuL(
uL,uR,xs,qL,qR)uL    =   xs /  (tlI,(C)-•"i(zs;£))"L(£)d£> 

JuR(uL,uR,xs,qL,qR)uR    =    (1 - xs) /  (uR(£) - uR{xs;£)) uR(£)d£, 
Jo 
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and 

Jx,{uL,uR,xs,qL,qR) 

f1 1 
=    Jo   2(Ui^)-«i(x,;0)2-a;,(«L(0-ui(x.;0)(ui),(Oede 

-Jo  £(«*(0-«&(*.; O)2 +(1-*.)(«Ä(0-«Ä(a:.;0)(4)x(Oede.     (4-395) 

T/ie objective function J is twice Frechet differentiable if the desired velocity ud is twice differentiable 
with absolutely continuous second derivative. 

Proof:     The assertion follows from the definition of J using standard estimates.   The proof is 
therefore omitted. ^ 

We conclude this section with a brief discussion of the differentiability of the velocity function. 
Suppose that we have an area function qL, qR and corresponding velocities üL,üR and shock location 
xs that satisfy the state equations (4.370), (4.371), (4.372), (4.373) and are such that (4.390) is 
fulfilled. Then the implicit function theorem guarantees the differentiability of the function 

L°° x L°° B (qL,qR) —» (uL,uR,xs) € W1'00 x W1'00 x R 

that maps the area into the solution of the state equation at this point. In fact, the derivative is 
given by 

(uL(qL,qR),uL{qL,qR),xs{qL,qR){qLjR) = -C{uL,UR,Xn)(üL,u 

Given UL, UR,XS, the velocity of the original problem can be obtained via (4.362), i.e. 

UL(^),        X£|0,4 
u(x) 

If one considers the map 

/   _   x (4-396) 

wi,oo x wi,oo xM3 (uL,uR,xs) —> u € L° 

that is defined by (4.396), then it is easy to see that because of the presence of a shock this map is 
not Frechet differentiable. In fact it is not even continuous. This shows that differentiability is only 
lost when the composite function 

(9L,9fi) —► (UL,UR,XS) —► u 

is considered. If left and right velocity and shock location are treated as independent variables, then, 
as shown in this section, differentiability can be guaranteed under suitable assumptions. 

Optimality Conditions 

We define the Lagrange function 

L(UL, uR, xs,qL, qR, XL, XR, X3) 

=    YJ0 ^-
U

L)
2
^+^

±
J (uR-ud

RfdZ + J  \L[(f(uL))t+xag(UL,qL)]dt 

+ I M(f(uR)k + (xs-l)9(uR,qR)}d4 + Xs{f(uL(l))-f(uR(l))}. (4.397) 
J 0 
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If the shock location at the optimum obeys xs € (0,1), then the first order necessary optimality 
conditions are 

0     —     L(uL,UR,x,){"UL,UR,Xs,qL,qR,\L,\R,\s)(ÜL,ÜR,£s), 
0    ^    L(qL,qR)(uL,UR,xs,qL,qR,XL,XR,Xs)(qL,qR), (4.398) 

0     =     L(\LAR,\,)(uL,UR,Xs,qL,qR,XL,XR,Xs)(XL,XR,Xs), 

for all (UL,UR,XS) with üL(0) = üR(0) = 0, for all (qL,qR) with (qL + qL,qR + qR) e Qad, and for 
all (XL,XR,XS). 

The third equation in (4.398) yields the state equation (4.370), (4.371), (4.372), (4.373). Using 
integration by parts we find that the first equation in (4.398) with UL(0) = üR(0) = 0 yields 

0    ~    L(uL,uR,x,)(uL,UR,xs,qL,qR,XL,XR,Xs)(üL,üR,xs) 

=   xs      (uL-ui)üLdt + (l-xs)      (uR-ud
R)üRdC + Jx,(uL,uR,xs,qL,qR)xs 

Jo Jo 

+ /   -{^L.)zfu{uL)üL + XL[xsgu(uL, qL)uL + xsg(uL, qL)] <% 
Jo 

+ /   -(^R)ifu(uR)üR + XR[(xs - l)gu(uR, qR)uR + xsg(uR,qR)] d£ 
Jo 

+(AL(1) + A.)/„(uL(l))uL(l) + (Afl(l) - Xs)fu(uR(l))uR(l). (4.399) 

If one sets xs = 0 and varies over all (üL,üR) with uL(0) = uR(0) = uL(l) = uR(l) = 0, then 
one obtains the adjoint equations 

(AL)C MUL)    =   xsgu{uL,qL) XL + xs(uL - ud
L), (4.400) 

(AÄ)e fu{uR)    =    (xs - l)gu(uR, qR) XR + (1- xs)(uR - uR). (4.401) 

Allowing üL(l),üR(l) ^ 0 yields the conditions 

AL(1) = -As,    AR(1) = Xs. (4.402) 

Finally, varying xs gives 

/■l 

AL5("L,9L) + XRg(uR,qR)d£ + Jx,(uL,uR,xs,qL,qR) =0. (4.403) / Jo 

The existence of Lagrange multipliers are guaranteed if the operator of linearized constraints is 
onto. Thus, existence of Lagrange multipliers is expected under the assumptions of Theorem 14(i). 
We provide a proof of this result, since the explicit form of the Lagrange multipliers derived in the 
proof are of interest in connection with the discretized problem. 

Theorem 16 If the assumptions of Theorem 14(i) are valid,  then the adjoint system (4400), 
(4-401), (4-402), (4-403) admits a unique solution. 

Proof:   Equation (4.400) is equivalent to 

/,    x Xs9u{uL,qL)   . UL-uf 

fu(UL) fu{UL) 

Using the integrating factor 

MO=exP([
lx°9ff><lf)dt 

\J( fn{uL(t)) 
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the solution of (4.400) with A/,(l) = — As is given by 

Similarly, the solution of (4.401) with A/?(l) = As is given by 

(4.404) 

(4.405) 

where 

"ß(0 = exP or xs - \)gu{uR(t),qR(t)) 

/€ fu(uR(t)) 

Inserting the solutions into (4.403), we find that 

dt) 

=    Jx.(uL,uR,Xs,qL,qR)-jo   |/   (l-x.)exp(-/ ^ dsJ7>^^ 

+ (4.406) 

Since (4.390) holds true, equation (4.406) has a unique solution X3. This concludes the proof of the 
theorem. A 

The second equation in (4.398) is equivalent to 

M0*.faL(O-^)< 

and 

AÄ(0 (x. - 1) (T«ä(0 - ^-) 

> 0     if qL(0 = 9iow, 

= 0    if gx,(S) e (giow.gupp), 

< 0     if qL(£) = gupp, 

>0     if <?K(£) = 9iow, 

= 0     if gfi(0 6 (9iow,9uPp), 

< 0     if qfi(0 = qupp. 

(4.407) 

(4.408) 

The interesting result in this section is about the continuity properties of the Lagrange multiplier. 
The co-states A/, and XR obey the shock condition (4.402). Prom the examination of the other 
equations it can be seen that Az,(l) = —XR(1) = 0 can be guaranteed only if the desired velocities 
can be matched exactly, i.e. the source terms in (4.400), (4.401), and the term Jx,(

uL,'uR,xs,qL,qR) 
in (4.403) vanish. 

The Discrete Design Problem 

As in the analysis of the continuous problem we divide the interval into two subintervals [0, xs] 
and [xs, 1]. The shock location xs is one of the state variables. The transformation onto the fixed 
domain as shown at the end of Section 4.8.3, however, is not performed explicitly, but incorporated 
implicitly using moving grids on the left and on the right of the shock. As we will see later, this is 
equivalent to discretizing the fixed domain control problem (4.369) - (4.375). 

137 



For the discretization of the optimal control problem we use a cell centered grid. The subinterval 
[0,xs] left of the shock is subdivided into NL equidistant subintervals of length hi = XS/NL, the 
subinterval [xs, 1] right of the shock is subdivided into NR equidistant subintervals of length HR = 
(1 - XS)/NR. The point x, denotes the midpoint of the ith cell: 

(i-h)hL, i = l,...,NL, 

=   xs + {i-\-NL)hR,   i = NL + l,...,NL + NR. 
(4.409) 

NL 
grid points 

ri   r\   r\   r\   r\   r\   ri   r\   r 

■NR- 
grid points 

r i n_i r_ 

Figure 4.44: The Grid 

On each cell the function q defining the area of the duct and the velocity u are approximated by 
constants & and ut, respectively. Therefore the number of state variables is NL + NR + 1 and the 
number of control variables is NL + NR. 

The objective function is discretized using the midpoint rule: 

Xg 

~2 

where 

J (uL(Z)-ud
L(xs;0)2dZ+l-^j (uR(0-ud

R(xs;S))2dt; « Jh(u,xs,q), 

,   NL NL+NR 

Jh(u,xs,q) = -Y,hL(ui-ud(xi))
2 + ±    J2    hR(ui-ud{Xi))

2. (4.410) 
i=l i=NL+l 

For the discretization of the differential equation (4.359) we use 

fi+l/2 — fi-l/2 
Axi + 9(ui,Qi) =0, 

where Ax, denotes the width of cell i. The fluxes at the cell boundaries are approximated as follows: 
In the supersonic region left of the shock we set /i+1/2 = f(v-i) giving 

/("t) ~ /(«t-i) 

hL 
+ fl(ut,9i)=0,    i = l,...,NL. 

In the subsonic region right of the shock we set fi+i/2 = /(ui+i) giving 

/(«i+i) - f(Ui) 
hR 

+ g{ui,qi)=0,    i = NL + l,...,NL + NR. 

The Rankine-Hugoniot condition is discretized as 

f(uNL) - f{uNL+i) = 0. 

(4.411) 

(4.412) 

(4.413) 

The equations (4.411), (4.412) are also the ones used in the Godunov scheme for the supersonic and 
subsonic regions, respectively. 

138 



If one multiplies (4.411) by xs and (4.412) by (xs - 1), then one can see that the resulting 
equations are implicit discretization schemes for (4.370) and (4.371). For (4.370) the indices i = 0 
and i = NL correspond to the boundaries £ = 0 and f = 1, respectively, whereas for (4.371) the 
indices i = NL + NR and i = NL + 1 correspond to the boundaries £ = 0 and £ = 1, respectively. 

The equations (4.411) and (4.412) multiplied by xs and xs - 1, respectively, and the equation 
(4.413) form the NL + NR + 1 state constraints 

where 

C?(u,xs,q) = < 

C?(u,xs,q)=0,    i = l,...,NL + NR + l, 

NL (f{ui) - /(ui-i)) + x5 g(v,i,qi) i = l,...,NL, 

NR (-/(tii+i) + /(tu)) + (s. - 1) g(ui,qi)    i = NL + l,...,NL + NR,    (4.414) 

f{UNL) ~ /(UNt+l) i = JVL+JVR + l. 

The scalars uo and UNL+NR+I are determined from the boundary conditions (4.373). 
This leads to the finite dimensional optimal control problem 

min    Jh(u,xs,q) 

s.t.    Ch(u,xs,q) = 0, (4-415) 

0 < giow < 9 < 9uPp- 

The state variables in the discrete problem are (u\,... ,UNL+NR,XS) and the control variables 
are 
(tfij • • • j QN^+NR)- One may add a state constraint 0 < xs < 1 to (4.415). However, in our numerical 
experiments the shock was always in the interior. 

Under the assumptions of Theorem 15 the discretized objective function Jh is differentiable. 
In fact, due to the discretization, one can even relax the differentiability assumptions on ud. The 
objective function Jh is differentiable if ud is differentiable at Xj, i = 1,..., NL + NR. In particular, 
it holds that 

"L    1 i - A 
Jl{u,xs,q)    =    £_(«<- ud{xi))2 - hL^ («i - ud(xi)) ud

x(a 
i=l NL 

NL+NR 

E    ^-(ui-u^x^ + hRil 
NL 

i=NL+l NR 
)(ui-ud(xi))<(xi). 

From the definition of / and g, it is easy to see that Ch is differentiable for all u,xs,q with u > 0. 
The partial Jacobian C^u x ■. of Ch is a bordered matrix given by 

cr(u,x,)(u'a;"9) 

/ ßi     0     eL 

0     BR    eR 

cFL     cfR     0 

\ 

(4.416) 

where BL & MNL
*
NL

 is a lower bidiagonal matrix, BR € MNRXNR
 is a upper bidiagonal matrix, and 

eL,d,L € 1R
NL

, eR,d,R € IR^". The structure of the matrix reflects the left hand side of the system 
(4.386), (4.387), (4.388), (4.389). The partial Jacobian C£ of Ch is a (NL + NR + 1) x {NL + NR) 
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'diagonal' matrix with diagonal entries given by 

Xs 9q(Ui,qi) 
(c*(u,xs,q)) 

i = l,...,NL, 

(xs - 1) gq(Ui, qt)    i = NL + l,...,NL + NR. 

If C(u x )(u, xs,q),BL, BR are nonsingular, the linear system 

/ BL     0     eL 

0     BR   eR 

\ <*L    4     0   J 

\ M frL\ 
UR = TR 

I \is 1 \   V°   J 
can be solved using 

ÜL    =   B^irL-eLXs), 

ÜR   =   B^irR-eRXs), 

where 

(4.417) 

(4.418) 

xs = {dT
LBlxeh + dlB^eR^idlB^rL + d^B^rR - ra). (4.419) 

This solution procedure is the discrete version of the procedure applied in the proof of Theorem 14 
to establish the existence of a unique solution of (4.386), (4.387), (4.388), (4.389). This is also the 
solution procedure that is used in our numerical examples. 

Theorem 17 // 

then BL is nonsingular. If 

Ui>y/H,    i = l,...,NL, 

Ui€{0,y/R),    i = NL + l,...,NL + NR, 

then BR is nonsingular, and if (4-420), (4-421), and 

(4.420) 

(4.421) 

N, 
i_ V^ [ TT NL fu(Uk) + xs 9u(uk,qk) 

NL+NR 

9{uj,q,) 

j    1    T     f    TT     NR
 ^U^ + (Xs ~ *) 9u{uk,qk)\ 54    An    L 11     NR f (uh)         0(«>,fc), (4-422) 

JVfi j=NL+l \k=NL+l lyR Ju^Uk> J 

then the matrix C?uxAu,xs,q) is nonsingular. 

Proof:   The ith equation of the system BLUL = r/, - e/, xs  is given by 

[NL fu(ui)+xs 5«(tii,ft))(uL)i - NL /u(«i_i)(fiL)i-i = -g{ui,qi)xs + {rL)u    i = l,...,NL, 

(4.423) 
where (uL)0 = 0. Condition (4.420) guarantees that NL fu(ui) + xs gu{ui,qi) > 0, i = l,...,NL. 
With 

NL /u(t*i-i) 
Wi 

9{ui,qi 
Vi = 

NL fu(ui) + xs gu(ui,qi)'      *     NL fu(Ui) + xs gu(ui,qi)' NL fv.(ui) + xs gu{ui, qt)' 

these equation can be written as 

(üL)i - Zi(üL)i-i = -WiXs +Vi,    i = l,..., NL, 

(rL)i 
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If we multiply the last difference equation by 1/Zj, where Zi = PH-i 2ji * = 1,•• •, NL, ZQ = 1, then 
we obtain 

-z-(UL)i - -z—("L)I-I = --^-a:« + ^~,    i = 1, • • •, NL, 

The solution of this difference equation is given by 

(üL)i = zi(f2-j:is + z'j)'   * = 1'"-'^- 

In particular, it holds that 

(4.424) 
(- S^

NL
 rp-1 ^ .M"fc)+*f g»(ufc,git)  / .   \ A   , ip«L vA ^     2^=i llfe=i NLu(uk) 9(Uj,qj) xs + 2-,j=i Zj)- 

The ith equation of the system BRüR = TR — eR xs  is given by 

(■Wfl /u(«i) + (xa - 1) 5u(«i,9i)J(üfi)i - iVjj /uK+i)(üfi)i+i = -5(w».9i)i» + (rß)i,      (4.425) 

i — Ni +1,..., Ni + NR, where (ÜR)NL+NR+\ = 0. As before we can rewrite these equations in the 
form 

(uR)i - Zi(ÜR)i+i = -WiXs +Vi,    i = NL + 1,..., NL + NR, 

where 
z, _ NR fu(uj+i)  g{ui,qi)  

NR fu(ui) + {xa-l) gu(ui,qiY       *     NR fu{v.i) + {xs-I) gu(ui,qiY 

 (rRh  
NR fu(ui) + (xs - 1) gu(ui,qi)' 

Note that condition (4.421) implies NR fu(ui) + (xs - 1) gu(ui,qi) < 0, i = NL + 1,...,NL + NR. If 
we multiply the last difference equation by 1/Zi, where Zt = Y\^^

NR
 ZJ, i = NL +1,..., Ni + NR, 

ZNL+NR+I = 1, then we obtain 

1 1 11)' V' 
^r(üL)i--—(ÄL)i-i = —=^xs + ^,    i = NL + l,...,NL + NR, 

The solution of (4.425) is given by 

(NL+NR \ 

J2   -^-xs + ^-\,    i = Ni + l,...,NL + NR. (4.426) 

In particular, it holds that 

{üR)NL +1 YI"=N??I 
NR

 /-(«*)+(*.-i) »»(«*-«*) 
/ _ TT^NL+NR  T-fNL+NR NR /„(ufc) + (a.-l) 9u(uk,qk)     /             x   - T^NL+NR   UA 
^      2^j=Nt + lllfc=j+l                      NRfu{uk)                   yW^q^Xs + 2^,j^NL + l Zj)' 

The last equation djüj, + e^üfl = rÄ of the system is equivalent to 

fu(uNL)(üL)NL-fu(uNL+1)(ÜR)NL+i=rs. (4.427) 
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Using the expressions (4.424), (4.426) one can see that the equation (4.427) admits a unique solution 
xs if and only if 

NL llfe=l NL /„(ufc)+i, S„(ufc,,t) 2^=1 ilfc=l ATjr. /u(ufc) 9{U3,q]) 

J.      J^TINL + NR    NR f«(itk)  srNL + NR  riNL + NR NR f„(uk) + (xs-l) gu(uk,qk)     , x 
T      NR llk=NL + l NR fu{uk) + (x,-l) gu(uk,qk) 2^j=NL + l \.lk=j+l NR Ju(uk) 9\uj,Qj)- 

This condition is equivalent to (4.422). A 

Remark 3 Equation (4-4%%) is the discretized version of (4-390) with ex ss 1 + x and 

Xs9u(UL{s),qL(s)) f Xs9u{Uj 

r1      (x. - i)gl 

JXj + ^hR Ju 

(UL(S)) 

(xs - l)gu(uR(s),qR(s)) 

ds 
NL 

k=j 

xs gu{uk,qk) 
K) 

ds Y^    (xs -1) gu(uk,qk) 
.(«*(*)) ""    "    kJ^+i       NRf»(uk) 

The Lagrange function of the discretized design problem (4.415) is given by 

1  NL NL+NR 

L(u,xs,q,X)    =    -J2hL(ui-ud(xi))2 + -    ^2    hR(ui-ud(xi))2 (4.428) 
t=i 

NL 

i=NL+l 

(4.429) 

+ ^2 Xi [NL (f(ui) - /(Ui_i)) + xs g(ui, qi)J 
i=l 
NL+NR 

+    J2    Xi{NR(-f(ui+l) + f(ui)) + (xs-l)g(ui,qi)) 
i=NL+l 

+\NL+NR+l[f(uNL) - f(uNL+i)J. 

The equations L(U)l5)(u, xa,q, A) = 0 are equivalent to 

[NL fu(ui)+Xs 9u(ui,qi)jXi-NL fu(ui)\i+i    =    -hL(ui - ud(xi)), 

* = 1 JVi-1, 
{NL fu{ui)+xs gu(ui,qi)j\i + fu(ui)XNL+NR+i    =    -hL(ui - ud(xi)),    i = NL, (4.430) 

{NRMui) + (xs-l)gu(ui,qiyjXi-fu(ui)XNL+NR+i    =    -hR(ui~ud(xi)), (4.431) 

i = NL + 1, (4.432) 

(i\rfl/„(ui) + (xs-l)5u(ui,gi))Ai-ArÄ/u(ui)Ai_1    =    -hR(Ui - ud(xi)), (4.433) 

i = NL + 2,...,NL + NR, 

and 
Aft NL+NR 

J^3(u,xSlq) + ^2^i9(ui,qi)+    Yl    Xi9(ui,9i) = 0. (4.434) 
i=l t=Aft+l 

The system (4.429) to (4.434) is given by 

( Bl     0     dL\  ( XL\       ( rL \ 

0     Bl   dR 

\  el     eR     °   / 

AL 

XR (4.435) 
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where we used the notation 

Az- = (Ai,..., AjvL),    XR = (XNL+I,.. .,XNL+NR),    \S = \NL+NR+1, 

and 

TL      =      (-/»L(U1 - Ud(xi)),...,-hL(uNL + 1 -U
d(xNL + i)Yj, 

TR    =    (-hR(uNL+i-ud(xNL+1)),...,-hL(uNL+NR-ud(xNL+NR))), 

rs    =    -J^(u,xs,q). 

The system (4.429) to (4.434) are the adjoint equations of the discretized problem (4.415). However, 
the equations (4.429) to (4.434) are not consistent with the adjoint equations (4.400), (4.401), (4.403) 

The inconsistency of the adjoint equations (4.429) to (4.434) of the discretized problem can be 
removed if we define 

Xi    =   NL\i,   i = l,...,NL, 

Xi    =   NRXh   i = NL + l,...,NL + NR, (4.436) 

Xi    =   Xi, i = NL + NR + l. 

In the scaled Lagrange multipliers, the equations (4.429) to (4.433) are equivalent to 

 'l/AT    '^("') + Xs 9u{ui, qi)Xi    =    -xs (m - ud(xi)), (4.437) 

i = l,...,NL-l, 

[NL fu(ui) + xagu(ui,qi)jXi + NLfu(ui)XNL+NR+1    =    -xs(ui-ud(xi)),    i = JV/,, (4.438) 

(iVß/u(ui) + (x3-l)ffu(ui,gi))Äi-Arfl/u(ui)ÄWL+ArR+i    =    -(1 - xs)(Ui - ud(xi)),        (4.439) 

i = NL + 1, 

—7/iV    lfu(Ui) + (Xs ~ V 9u(ui,qi)Xi    =    -(1 - x3)(ui - ud(xi)), (4.440) 

i = NL + 2,...,NL + NR. 

The equations (4.437) and (4.440) are consistent with the infinite dimensional adjoint equations 
(4.400) and (4.401). Equation (4.437) is an implicit scheme for (4.400) starting at x = xs and 
marching towards x = 0, the equation (4.440) is an implicit scheme for (4.401) starting at x = xa 

and marching towards x = 1. 
The equations (4.438) and (4.439) are equivalent to 

fu(ui)Xi+fu(ui)XNL+NR+i + -^-gu(ui,qi)Xi    =    -hL(ui -ud(xi)),    i = NL,    (4.441) 

x  — 1 
fu(v,i)Xi - fu(ui)XNL+NR+i + -^—gu(ui,qi)Xi    =    -hR(ui-ud(xi)),    i = JVL + {4.442) 

These equations are consistent with the initial conditions (4.402). 
In the scaled Lagrange multipliers, equation (4.434) is written as 

NL _       j NL+NR_ 

Ys~XiW 9(ui>9i) +    X^    ** W 9(Ui>*) = ~Jx,(«.*•>«) (4.443) 
«=i L i=NL+l      7Vß 

which correspond to the equation (4.403). 
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The system (4.437) to (4.440) and (4.443) is given by 

/ Bl     0     dL \ I"1) (H\ 
0     Bl    dR XR = ?R 

eT
L     e

T
R     0   J { K ) \   f«    / 

(4.444) 

V 
where we used the notation 

Az, = (\I,...,\NL),    XR = (XNL+I,---,^NL+NR),    XS = XNL+NR+I, 

and 

fL    =    [-xs{ui-ud(xi)),...,-xs{uNL-ud{xNh))sj, 

?R     =      y-(l-Xs){UNL+i-Ud(xNL + i)),...,-(l-Xs)(uNL+NR-Ud(xNL+NR))j, 

fs    =    -J%s(u,xs,q). 

The entries in the system matrices in (4.435) and (4.444) are related as follows: 

dL = NLdL,    dR = NRdR,    eL = —- eL,    eR = -rr-eR. 
JVL NR 

Notice that 

/ 
BL     0     eL \       ( 

0     BR   eR      = 

\%   d\    0 )     v 

■k1 

0 

0 

0      0 ^  / BL     0     eL \  f 

0     BR   eR 

0 1 V   <*L dj    dl     0 R ) V 

hi 0     oN 

0 NRI   0 

0 0      l) 

(4.445) 

In particular, this relation shows that the system (4.444) is uniquely solvable if and only if (4.435) 
is uniquely solvable. 

The previous considerations raise the question of the "correct" Lagrange multipliers. The La- 
grange multipliers A appear to be the correct ones if one starts with the discrete system. On the 
other hand, the Lagrange multipliers A appear to be the appropriate ones if one tries to establish a 
relation with the original, infinite dimensional problem. This discrepancy can be overcome, if one 
chooses the appropriate scalar product for the control space. 

If we consider u, xs as a function of the area q defined by the discrete state equation Ch(u, xs,q) = 
0, then we can write the discrete optimal control problem (4.415) in the reduced form 

min    Jh (q) = Jh (u(q), xs (q), q) 

s.t.    0 < g]ow < q < qupp. 
(4.446) 

For the sake of presentation, we assume that for all q with 0 < qiow < q < qupp the equation 
Ch(u,xs,q) = 0 has a unique solution. Using the implicit function theorem, the derivative of the 
reduced objective can shown to be 

j£(q) 6q = (vqJ
h(u(q),xa(q),q) + C^(u(q),xs(q),q)x)T Sq. 

Hence, the gradient of the reduced objective function with respect to the Euclidean scalar product 
is given by 

VqJ
h(q) = VqJ

h(u(q),xs(q),q) + C^u(q),xs(q),q) A- 
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If we define the scalar product in the discretized control space to be the weighted Euclidean scalar 
product 

NL   1 NL+NR 

i=l 
NL i=NL + l 

NR 

(4.447) 

then we find that 

Jfa) 6<1 = ((CZ{u,xa,q))T\)T6q = ({C^(u,xs,q))T~X,6q)Qh. 

Thus, the gradient of the reduced objective function with respect to the weighted Euclidean scalar 
product is given by 

VqJ
h(q) = VqJ

h(u(q),xs(q),q) + CZ(u(q),xs(q),q) Ä. 

Moreover, with (4.445) it is easy to see that the system matrix in (4.444) is the adjoint of the 
Jacobian C^     Ju,xt,q) with respect to a weighted scalar product. In fact, if we define 

NL    1 NL+NR 

(AI, A2)Afc = ]T — (Ai)i(A2)i +    Yl    W (Al)*(Aa)i + (
X

I)NL+NR+I(X2)NL+NR+I,     (4.448) 
t=i 

NL i=NL+l 
NR 

then 

V ~x° ) 

(h.\T(+j 

( BL     0     eL \ ( üL \ 

0     BR   eR 'Ah 

Afl 

V ~x° ) 
{ 

o    o 

V 
0    w;'  o 

0T       0T     1 

ÜR 

( BL     0     eL \  ( 

0     BR    eR 

\*L   €   o 

NLJ 0      0 ^ I 

0 NRI   0 

0T 0T      1 J 
\ 

A1  °   ° 
0   A1 ° 

0T       0T     1 

- < 

Bi     0     dL 

0     Bl   dR 

-T el     el     0 

\ (h) füL\ 
A/? » ÜR 

/ I  ~X°  ) \    Ü°    J 
'Ah 

Note that (qi,q2)Qh 
and (Ai, A2)Ah are the appropriate discretizations of the scalar products on 

L2(0,1) x L2(0,1) and X2(0,1) x X2(0,1) x M, respectively. 

Numerical Results 

In our numerical experiments the discrete optimal control problem (4.415) is solved using a sequential 
quadratic programming (SQP) method. These methods solve the nonlinear constrained problem 
(4.369)-(4.375) or the corresponding discretized problem (4.415) by solving a sequence of quadratic 
programming problems. We used the reduced SQP methods, described previously, based upon a trust 
region globalization strategy. The algorithm uses limited memory BFGS updates for the reduced 
Hessian. The initial Hessian was chosen to be the identity and the number of updates stored will 
be denoted by L. In all computations, the trust region was active in the first few iterations. We 
also point out that since we do not add a regularization term like /o(/0 q\ + /0 qR) in the objective 
function, the reduced Hessian for the infinite dimensional problem can only expected to be positive 
semidefinite. The discretization sometimes has a regularizing effect and in this case for a fixed 
discretization the reduced Hessian for the discretized problem may be positive definite. However, 

fü,\ UL 

ÜR 

\   U°   J 
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in this case the smallest eigenvalue converges towards zero as the discretization is refined. The lack 
of positive definiteness will of course effect the convergence behavior. We have made runs with a 
regularization term as shown above added to the objective function. As expected, the SQP algorithm 
required fewer iteration. However, we have omitted the regularization term here. 

One issue which will be emphasized in this section is the influence of the relation between 
the infinite dimensional problem and its discretization onto the performance of the optimization 
method. Various studies have shown the appropriate implementation of the optimization algorithms 
for the discretized problems to be important. The underlying infinite dimensional problem dominates 
the discretized problems. If the discretized problems are treated as finite dimensional nonlinear 
programming problems, i.e., if the underlying infinite dimensional problem structure is ignored, 
the performance of the optimization algorithms usually deteriorates as the discretization is refined. 
The use of weighted scalar products that are obtained from the discretization of the proper scalar 
products of the infinite dimensional problem emphasize the underlying infinite dimensional character 
of these problems. The implementation of the SQP algorithm with weighted scalar products as 
discussed in the previous section is the proper application of the frameworks used in the previous 
references. In our numerical experiments reported below this leads to a substantial improvement 
in the performance of the algorithms. We also point out that differentiability of the functions and 
continuous invertibility of the linearized constraints are important conditions that have to hold 
in order to formulate the SQP method and to prove its local convergence in the neighborhood of 
strict local minimizers. For the infinite and finite dimensional version of the design problem, these 
properties have been established in this section. 

In all our numerical computations we use the constants 

7 = 1.4,    H = 3.6,    which yield   7 = 1/6,    H = 1.2. 

The target velocity ud is computed as follows: Given a cubic area function A uniquely determined 
by 

A(0) = 1.05,    Ax(0) = 0.1,    A(l) = 1.745,    Ax(l) = 0.1, 

we use a discretization scheme similar to the one described in this work to compute the corresponding 
velocity u as a solution of (4.345), (4.347), and (4.348) with inflow and outflow velocities given by 

uin = 1.299,    uout = 0.506. 

The discretization scheme applied to solve (4.345), (4.347), (4.348) also treats the shock location 
as an explicit variable and approximates the ODE using a scheme corresponding to (4.414). We 
use 200 subintervals left of the shock and 200 subintervals right of the shock to compute the target 
velocity. Note that for the construction of the target velocity the area A and not its logarithmic 
derivative is used. For the formulation of our optimal design problem we need continuous data. These 
are obtained by using spline interpolations. First we compute two cubic splines using the points 
(xi,ui),...,(x2oo,U20o) and (x2oi,«20i), ••• ,(2:400, U400) and then we join these two cubic splines 
by constructing a cubic polynomial interpolating (x2oo,U20o), (x20i,u2oi) anc* tne derivatives of the 
two previously constructed splines at X200 and X201, respectively. The so computed resulting target 
velocity ud is continuously differentiable. Unless stated otherwise, we use the bound constraints 
9low — 0, <7upp = 1. 

The starting values for the SQP method are as follows: The initial logarithmic derivative q of 
the area is chosen to be q = 0.5. The initial shock location is computed from the target data and is 
chosen to be xs = |(x2oo +^201)- For the initial velocity we use a piecewise linear function. On the 
left of the shock the initial velocity is a linear interpolation between uin at x = 0 and uXs = 1.7 at 
the initial estimate xs of the shock location. On the right of the shock we use the linear interpolation 
uXs = H/1.7 and uout. This interpolation scheme guarantees that u € (VW, y/2H) left of the shock 
and u < vH right of the shock. If we would simply use Uj = ud(xi), then these restrictions on u 
would not be satisfied if the initial shock location does not match the target shock location. 

With these starting values and target data, and the discretization NL = NR = 100 the initial 
function value is Jh(u,xs,q) « 0.9 * 10-3 and the norm of the residual is \\Ch(u,xs,q)\\Ak « 0.13. 
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Here, the residual is computed using the weighted norm induced by (4.448). The bound constraints 
were never active. The necessary optimality conditions show that in this case the Lagrange multi- 
pliers Ai,..., Ajv,,+/vR at the optimum are zero. See also (4.407), (4.408). If the truncation criteria 
\\CJ^\\IR

N
L + 

N
R < f is used, then the Lagrange multipliers Ai,..., \NL+NR 

are of the order e. Anal- 
ogous statements hold for the Lagrange multipliers Ai,... ,XNL+NR- 

In the first set of computations we study the importance of the scalar products for the numerical 
computations. In these computations the bounds on q were inactive. We use the weighted scalar 
products introduced in Section 4.8.3 and their corresponding norms. The scalar product (-,-)ßh is 
used in the truncation criteria ||C*A||eh < 10~5 and, more importantly, for the computations of the 

BFGS updates. The scalar product (•, -)^h is used to compute quantities like (A, C)\h. These compu- 
tations are compared with the ones in which the discretized problem (4.415) is solved as a nonlinear 
programming problem in MNL+N'i x ]R

NL+NR+1
. The truncation criteria is \\C^X\\RNL+NR < 10-5. 

First, we observe that the SQP method with weighted scalar products requires significantly fewer 
iterations to converge. The results are summarized in Table 4.12 in which we compare the two SQP 
versions for various choices of numbers of updates stored. 

Table 4.12: Number of SQP iterations versus number L of updates stored (NL = 100, NR — 100). 

Using weighted scalar products        Using Euclidean scalar products 

L Iterations L Iterations 

10 68 

20 54 

30 45 

40 45 

10 88 

20 75 

30 52 

40 52 

The superiority of the SQP method with weighted scalar products over the one with Euclidean 
scalar products, not only shows in the number of iterations, but also in the quality of the computed 
solution. Typical results are shown in Figures 4.45 and 4.46. The differences between computed 
velocity and target velocity and between computed area and the cubic area function are significantly 
larger for the computations using Euclidean scalar products. Moreover, the results computed using 
weighted scalar products and limited memory BFGS updates with L = 30 or L = 40 are virtually 
identical, whereas, the logarithmic derivatives of the area functions computed using Euclidean scalar 
products and L = 30 or L = 40 were significantly different. This shows that the relation between the 
infinite dimensional problem and its discretization is not only of theoretical interest, but also promises 
significant advantages from a computational point of view. As we have noted before, the reason for 
this behavior is that the underlying infinite dimensional problem dominates the discretized problems. 
If the discretized problems are treated as finite dimensional nonlinear programming problems, i.e., 
if the underlying infinite dimensional problem structure is ignored, then the problems often become 
artificially ill-conditioned and the performance of the optimization algorithms usually deteriorates 
as the discretization is refined. In our examples, an ill-conditioning is indicated by the oscillating 
parameter functions qi, qR shown in e.g. Figure 4.46. The use of weighted scalar products that are 
obtained from the discretization of the proper scalar products of the infinite dimensional problem take 
the underlying infinite dimensional problem structure into account. The resulting implementation 
of the SQP method is consistent with the formulation of the SQP method in the infinite dimensional 
framework. 

The next results concern target data with errors. Although the target data ud was constructed 
using a different discretization for the area than the one used in the optimal design problem, the 
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Computed area A. Computed area A and its logarithmic derivative q. 

0.6 0.B 

Computed velocity, and sonic speed VH. Adjoint 

Figure 4.45: Computed area, velocity and adjoint using weighted scalar products and L = 40, NL = 
100, NR = 100. 

target data is almost feasible in the sense that we can find an area and a velocity profile such that 
u « ud. In the following we will use nonfeasible target data. This is done by modifying the procedure 
for the computation of the target data used previously. Now we compute two cubic splines using the 
points (xi, ui),..., (x2oo-s) "200-s) and (x20i+s> u20i+s), • - •, (^400, U400) and then we join these two 
cubic splines by constructing a cubic polynomial interpolating (x2oo-s,U2oo-a), (x2oi+3,U2oi+s) and 
the derivatives of the two previously constructed splines at X200+S and X201+S, respectively. This 
gives target data that are "smoother" around the shock. 

Computations corresponding to the following figures were done using weighted scalar products 
and the parameters L = 40 and NL = 100, NR = 100. The target data were computed using 
s = 10. The bounds q\ow = 0 and qupp = 1 were both active for some indices, as can be seen in 
Figure 4.47. The SQP method converged after 74 iterations. The function value at truncation was 
Jh = 0.79 * 10~3, the norm of the constraints was HC^HA,, = 0.75 * 10-7. 

The fact that the logarithmic derivative is zero is due to the fact that the target velocity is not 
monotonically increasing left of the estimated shock location. In fact, if we consider the infinite 
dimensional problem, then the state equation (4.364) implies that 

9L = 
(1 - H/u2)ux 

Xstfu- H/u)' 

If the target velocity ud is decreasing left of the computed shock, then, in order to be close to ud, 
the computed velocity tries to imitate the nature of the target flow and, hence, the logarithmic 
derivative qi of the area tries to become negative. See the previous equation for q^. Of course, the 
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Computed area A. Computed area A and its logarithmic derivative q. 
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Computed velocity, and sonic speed vH. Adjoint 

Figure 4.46: Computed area, velocity and adjoint using Euclidean scalar products and L = 40, NL = 
100, NR = 100. 

constraints prevent qi, from becoming negative. Similar reasoning can be used to explain why the 
logarithmic derivative of the area to the right of the computed shock, qR is at its upper bound, q-upp. 

These results should not be surprising, as the lagrangian (4.428) is linear in the design variable, 
(9L,9fi), and optimal control theory tells us that this is a candidate for "bang-bang" control. In 
these cases, the bounds play an important role in the solution of the problem, as in most cases, a 
solution would not exist, without bounds. The region where the bound constraints on the design 
variables are inactive appears to correspond to a case of singular control, and we find the flows 
are perfectly matched in these regions. In this case the Lagrange multipliers Xi,..., XJVL+JVB will 
generally not be zero in regions where the bounds are active, c.f. (4.407), (4.408). This behavior can 
be observed in Figure 4.47. 

The presence of the lower bound at q\ow = 0 is important in this case, for the results to make 
physical sense. The magnitude of the upper bound also seems to be important, as might be expected. 
We tried to run the same problem with q\ov, = 0 and qupp = 10. However, the SQP algorithm stopped 
because the maximum number of iterations 100 was exceeded. The reason is that a spike evolves in 
the function q right of the estimated shock. 

A similar situation prevails for the case where the discretization for the computed solution, 
NL,NR, exceeds the number of discrete grid points used to represent the target data. For the 
numerical example discussed above, when NL or NR exceeds 200, we find that some subintervals 
exist in the region around the shock where the left and right target velocities are connected by a 
cubic spline. Since this cubic spline causes a smoothing, effects similar to those observed with the 
perturbed, smooth target data discussed previously were observed, for some cases. Thus, if a target 
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velocity similar to the one used here has to be identified, then it seems to be important that the 
discretization of the problem is sufficiently coarse relative to the target data. 
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Figure 4.47: Computed area, velocity, and adjoint using smoothed data. 

4.8.4    Conclusions 

In this study we have studied a design optimization problem involving a compressible flow with a 
shock. The differentiability of the constraint functions and the formulation of the optimality condi- 
tions in the presence of shocks is a difficult issue. Our study indicates that shock-capturing schemes 
with poor continuity properties result in poor convergence behavior for optimization algorithms. As 
an alternative, we used a formulation that treats the shock location as an explicit state variable. 
This allowed us to perform a rigorous mathematical analysis of the problem. We were able to sharply 
resolve the discontinuity while preserving differentiability of the map from design parameters to flow 
solution. Moreover, under suitable conditions we have established that the linearization of this map 
is invertible, that this inverse is uniformly bounded in a neighborhood of feasible points and that 
the usual first order necessary optimality conditions are valid. An important finding of our study is 
that the co-state is discontinuous at the shock location, unless the target velocity can be matched 
perfectly. 

The structure of the infinite dimensional problem is inherited by its discretization. However, 
important observations can be made concerning the numerical solution of the discretized optimal 
control problem. One can view the discretized optimal control problem as a nonlinear programming 
problem in M

NL+NR
 X JR

NL+NR+1
. On the other hand, one can establish the relation between 

the original, infinite dimensional problem and its discretization. This leads to slight reformulations 
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of the optimality conditions and the introduction of weighted constraints that correspond to the 
infinite dimensional formulation of the problem. This has been proven valuable for the numerical 
performance of the SQP algorithm used for the solution of the optimization problem. The use of 
weighted scalar products, i.e. the use of the infinite dimensional nature of the problem, reduced the 
number of iterations significantly and improved the quality of the computed solution. 

Our results show that while a straightforward off-the-shelf application of SQP methods will 
likely fail, a careful analysis of the problem and an incorporation of the problem structure allows 
the successful application of these powerful methods. The extension of the result presented in this 
section to the full Euler equations is part of our ongoing research. 
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4.9    Airfoil Design by an All-At-Once Method 

In this section we further investigate the applicability of the all-at-once formulation of the optimiza- 
tion problem now in the context of an airfoil design problem. In many treatments of the airfoil design 
problem, the flow variables q are viewed as functions of the design parameters w. This function q(w) 
is implicitly defined by the governing equations R(q, w) = 0, in our case the steady state 2-D Euler 
equations. The optimization formulation describing the airfoil design problem is then posed in the 
design variables w. This is called the black-box approach. The Euler equations are not visible to 
the optimizer, but hidden by eliminating the flow variables, i.e.by expressing the flow variables q 
as functions of the designs variables w. An alternative to this approach is the all-at-once formu- 
lation in which one views flow variables q and design variables w as independent variables in the 
optimization problem. The Euler equations coupling these two are included into the optimization 
formulation as a constraint along with other constraints such as geometric constraints, drag con- 
straints, etc. The optimizer is now responsible for computing a point which is feasible and optimal 
at the same time, i.e.move towards feasibility and optimality at once, rather than moving along the 
manifold of feasible points towards optimality. Comparisons between these two approaches on other 
problems have shown that the all-at-once approach can be substantially faster. The reason is that 
viewing q and w as independent variables, allows the optimizer to violate the Euler equations during 
the iterations. These are only required to be satisfied at the solution. This makes the optimiza- 
tion problem less nonlinear and often results in fewer iterations. Our experience indicates that an 
all-at-once optimization approach requires only three to four times as many iterations to solve the 
design problem as compared to the effort required for the solution of a single analysis problem. It 
is also important to note that an optimizer implementing the all-at-once approach requires roughly 
the same problem information as an optimizer applied to the black-box approach, except that the 
all-at-once approach does not require solutions to the nonlinear flow equations. We give a more 
detailed presentation of the relations in the next section. 

Rather than formulating the airfoil design problem, its discretization, and a solution algorithm 
and then implement all components from scratch, we decided to build upon existing codes. In our 
implementation of the all-at-once method for our airfoil design problem we combine the optimizer, 
TRICE, with the flow code, ErICA. This imposes certain limits on the choice of problem formulation 
and discretization, but we believe this to be a realistic approach. As we have indicated above, 
various issues have to be addressed when solving the airfoil design problem. We focus on the 
optimization formulation. Our airfoil parameterization is obtained by choosing a set of basis airfoils 
and computing an optimized airfoil as a linear combination of those. Moreover, grid generation 
and discretization of the Euler equation was done to limit difficulties arising from nonsmoothness 
and inconsistencies. Further gains in efficiency and accuracy can be achieved by using more refined 
discretization techniques and improving the coupling of the flow solver with the optimizer. This was 
beyond the scope of this study and is planned for future investigations. 

This paper is organized as follows: In Section 4.9.1 we discuss optimization formulations and 
their relations. This section also provides further motivation for the all-at-once approach and 
reviews some existing optimization approaches. The governing equations and the flow code ErICA 
are discussed in Section 4.9.1. The design problem is formulated in Section 4.9.2 and Section 4.9.3 
contains a description of the optimizer TRICE. Section 4.9.4 contains some implementation issues 
that have to be resolved when combining an optimizer with a flow code for our situation. Section 
4.9.5 presents some numerical results and contains a discussion of our numerical experiments and 
open issues. 

4.9.1    Optimization Problem 

There are several ways to cast the design problem outlined in the introduction into an optimization 
problem. Two formulations will be discussed in this section. The main purpose of this section is 
to provide a background for the discussion of our approach to the airfoil design problem and for a 
comparison with other approaches in the literature.  In this section we proceed as follows: First, 
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we present the two formulations and their relation in an abstract framework. Then we discuss the 
applicability to the airfoil design problem. 

The first formulation of the airfoil design problem is given by 

min        J(q,w), (4.449) 

s.t.       R(q,w) = 0, (4.450) 

G(q,w)<0. (4.451) 

Here q represent the flow variables and w are the design parameters. The constraint function R 
represents the Euler equations. The inequality constraints (4.451) represent geometric constraints, 
drag constraints and the like. The special case in which G does not depend on the flow parameters 
q deserves attention. In this section we assume that the functions J : JRn" x ]Rn™ -* 1R , R : 
JRn" x Rn™ -* JRn-, and G : Mn" x JRn» -* mn° are twice continuously differentiable at the points 
under consideration. However, we note that for the formulation and execution of the optimization 
algorithm applied to our airfoil design problem, we only need first derivatives. For fi, G we denote 
differentiation with respect to a variable by using the variable as a subscript, e.g.Rq(q,w) denotes 
the partial Jacobian of R with respect to q. In addition to the differentiability assumption, we make 
the assumption that Rq(q,w) is invertible at all points (q, w) under consideration. 

Under the assumption of the implicit function theorem, the constraint (4.450) locally defines a 
function q : ]Rn™ —> 2Rn' as the solution of 

R(q(w),w)=0. (4.452) 

If the equation (4.450) has a unique solution q(w) for all w € RUw under consideration (typically, 
(4.451) represents an explicit restriction of the design space and therefore not the whole JRnw is 
relevant), then we can eliminate the flow variables q and formulate (4.449)-(4.451) in the following 
reduced form: 

min        J(w) = J(q(w),w), (4.453) 

s.t.        G(w) = G(q(w),w) < 0. (4.454) 

The optimization formulation (4.449)-(4.451) corresponds to the all-at-once (AAO) approach 
(also called the simultaneous analysis and design (SAND) approach). The optimization formu- 

lation (4.453), (4.454) corresponds to the black-box approach (also called the nested analysis and 
design (NAND)) and it corresponds to the multidiscipline feasible and individual discipline feasible 
approach. 

In the following, we present optimality conditions for (4.449)-(4.451) and we discuss the relation 
between these two problems. These results are known and can be found in a similar form. Let 

L(q, w, A, fj.) = J(q, w) + XTR(q, w) + fJ,TG(q, w) (4.455) 

be the Lagrangian corresponding to (4.449)-(4.451). If a constraint qualification is met, then for an 
optimal point (q, w) of (4.449)-(4.451) there exist A, p such that 

VqJ{q,w)+Rg(q,w)TX + Gg(q,w)Tß    =   0, 

WwJ(q,w) + Rw(q,w)T\ + Gw(q,w)Tn    -    0, 

R{q,w)    =   0, 
(4.456) 

G(q,w)    <    0, 

/x    >    0, 

G(q,w)Tß    =    0. 
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If G does not depend on q, then the first equation in (4.456) reduces to 

VqJ(q,w)+Rq(q,wf\ = 0. (4.457) 

Equation (4.457) is called the adjoint equation and, if G does not depend on q, defines the Lagrange 
multiplier (or the co-state) A. With A given by (4.457), the term VwJ(q,w) + Rw(q,w)TX of the 
second equation in (4.456) is called the reduced gradient. 

A commonly used constraint qualification is the linear independent constraint qualification 
(LICQ): Let G!(q, w) denote the vector of functions of G(q,w) which are active at (q, w). Then 
LICQ is satisfied if the gradient of the component functions in R(q,w) and Gr(q, w) are linearly 
independent. If G does not depend on q and if the rows of G\w) are linear independent, which is, 
e.<?.the case if G(w) = ±w, then our assumption that Rq(q,w) is invertible implies that LICQ is 
satisfied. 

The second order necessary [sufficient] optimality conditions are given by (4.456) and 

CI)T"<^«>CI)(>I° <"58> 
for all sq,sw satisfying 

Rq(q,w)sq + Rw(q,w)sw    =    0, (4.459) 

Gq(q,w)sq + Gw(q,w)sw    =    0. (4.460) 

Unless noted otherwise, G(q,w) would usually refer to the set of active constraints, G'^q.w). Here 
H(q, w, A, p) denotes the Hessian of the Lagrangian 

H(q, w, A, p) = V2
{qw)L{q, w, A,p). 

Points satisfying the homogeneous state equation (4.459) can be characterized by ( ** J = T(q, w)sw, 

where 

T(q,W)=^-R"^w)~lR-^w)y (4.461) 

With this, (4.458), (4.459), (4.460) can be rewritten as 

swT(q, w)TH(q, w, A, p)T(q, w)sw > [>] 0 (4.462) 

for all sw satisfying 
[-Gq(q,w)Rq(q,w)~1Rw(q,w) + Gw(q,w)]sw = 0. (4.463) 

The matrix T(q, w)TH(q, w, A, ß)T(q, w) is called the reduced Hessian. The term on the left hand 
side of (4.463) can either be computed by calculating the sensitivities Rq(q,w)~1Rw(q,w) or using 
an adjoint approach. If we define 

A = -Rq(q(w),w)-TGq(q(w), w)T, (4.464) 

then the left hand side of (4.463) can be written in the form ATRw(q(w),w) + Gw(q(w),w). In 
particular if ng is smaller than nw the adjoint equation based approach seems more attractive than 
the sensitivity equation approach. 

It is known that derivatives for the reduced problem (4.453), (4.454) are related to the reduced 
quantities of the problem (4.449)-(4.451). For example, the gradient VJ(w) of the reduced problem 
is equal to the reduced gradient VwJ(q,w) + Rw(q,w)TX, with A given by (4.457), at q = q(w). 
Moreover, the Hessian H(w, /i) = V^L(u;, p) of the Lagrangian L(w, p) = J(w) + G(w)T/j, of the 
reduced problem is equal to the reduced Hessian T(q, w)TH(q, w, A, p)T(q, w). Finally, the Jacobian 
0^(11;) is equal to the matrix on the left hand side of (4.463) at q = q(w). 
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The all-at-once approach decouples state and design variables. An optimizer for (4.449)-(4.451) 
can use this decoupling and is allowed to violate constraints during the iteration. This can result 
in substantial gains in performance. However, the optimizer must achieve feasibility and optimality 
at the same time. This requires carefully designed optimization codes to maintain robustness. In 
computational experiments (Prank and Shubin, 1992), the black-box formulation always performed 
more robustly than the implementation of the all-at-once approach for a one-dimensional duct de- 
sign problem. Concerning the applicability of the all-at-once approach and the black-box approach, 
it should be mentioned that most of the quantities needed to implement the all-at-once approach 
also have to be provided for an implementation of the black-box approach. This is indicated by the 
relations between derivatives for the reduced problem (4.453), (4.454) and the reduced quantities of 
the problem (4.449)-(4.451) summarized above. 

In the context of airfoil design problems both formulations (4.449)-(4.451) and (4.453), (4.454) 
have been used, however, currently the black-box formulation (4.453), (4.454) seems to be dominant. 
In both cases only the equality constrained problem (4.449), (4.450) is considered. The optimization 
methods are derived from the optimality system for (4.449), (4.450). 

We use the all-at-once formulation (4.449)-(4.451). For our particular design problem the con- 
straints G are simple constraints on the design variables. The exact problem formulation will be 
introduced in the subsequent sections. We use an SQP method for the solution of the all-at-once 
formulation. This SQP method uses an interior point strategy to handle the inequality constraints 
and employs a trust-region strategy for globalization of convergence and to enhance robustness. 
See also Section 4.9.3. If only equality constraints are present, then the Newton based methods 
are related to the SQP methods. Besides the capability of handling inequalities on the designs, 
other main differences are that the SQP methods use a trust-region globalization and, in addition 
to exact second derivatives, provide quasi-Newton approximations to the full and reduced Hessian 
of the Lagrangian. First and second order convergence results have been proved and the influence 
of inexact derivatives have been analyzed. 

For the formulation of the airfoil design problem as an optimization problem, several other 
issues are of great importance. These are the issues of discretization, differentiability, and unique 
solvability of state equations and linearized state equations. We give a more detailed description 
below. For general airfoil design problems comprehensive, rigorous treatments of these issues are still 
missing. In the case of a one-dimensional duct design problem, which is related to the airfoil design 
problem, such a comprehensive, rigorous treatment can be found in Section 4.8. It is shown that an 
understanding of these issues can be used to improve robustness and efficiency of the optimization 
code. These improvements are based on the understanding of the problem, of its discretization, and 
of the optimization method. They are achieved with very little programming effort and almost no 
additional computing effort per iteration. 

The airfoil design problem originally is an infinite dimensional problem. Therefore, the opti- 
mization formulation and optimization algorithm have to be combined with a discretization scheme. 
Various approaches are possible. Two of those are the optimize-then-discretize approach in which 
the optimization algorithm is formulated in the infinite dimensional setting and then discretiza- 
tion are applied to the individual steps, and the discretize-then-optimize approach in which one 
first discretizes the problem and then applies an optimization algorithm to the discretized prob- 
lem. The processes of discretization and optimization are usually not interchangeable and therefore 
these two approaches are different. The numerical solution of an infinite dimensional problem re- 
quires a careful study of the problem at hand. Several issues have to be kept in mind. In the 
optimize-then-discretize approach the derivatives after discretization are usually not the derivatives 
of the discretized functions. Therefore optimization algorithms have to cope with inexact deriva- 
tive information. See Section 4.7. The discretize-then-optimize approach often neglects the fact 
that the infinite dimensional problem structure still influences the finite dimensional problem. If 
this influence is not incorporated properly, then the optimization problem typically becomes artifi- 
cially ill-conditioned and one observes a severe degradation in performance and robustness of the 
optimizer. 
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Derivatives of constraint functions and solutions q to the state equations are used in the formu- 
lation of optimality conditions and in efficient optimizers. See, for example, gradient computations 
using sensitivities or adjoint equations. For problems governed by the Euler equations, differentia- 
bility in the infinite dimensional context is problematic, due to the presence of shocks. This might be 
different for the discretized Euler equations. If smoothing procedures (e.^.introduction of artificial 
viscosity) are applied in discretization schemes for the Euler equations, the resulting finite dimen- 
sional system may be differentiable. However, since the discretization schemes used in CFD codes 
are very complex, 'derivatives' and 'adjoint equations' should be treated with care and usually must 
be understood formally. 

It is also important to keep in mind that the formulations (4.449)-(4.451) and (4.453), (4.454) 
are only equivalent if (4.450) has a unique solution q{w) for all w e Rn™ under consideration. If 
R(q, w) = 0 represents the (discretized) Euler equations, this assumption seems to be rather strong 
in view of non-uniqueness results for discretized Euler equations. The existence and uniqueness of 
the solution q of R(q, w) = 0 for given w is often also related to the existence and uniqueness of 
the solution sq of the linearized state equations Rq(q,w)sq + Rw(q,w)sw + R(q,w) = 0 for given 
(q,w),sw. 

As we have noted before, for a one-dimensional duct design problem, which is related to the 
airfoil design problem, the above issues have been rigorously discussed in Sectionrhess. For general 
airfoil design problems these issues are subject of current research. In our approach to the airfoil 
design problem we parameterize the airfoil using linear combinations of existing airfoils. This can 
be viewed as a reduced basis approach leading to a low dimensional {nw = 4) design space. Our grid 
generation scheme leads to grids which depend smoothly on the design parameters. Our application 
programs are based on the package ErICA for the simulation of flows over airfoils governed by the 
Euler equations. Among the discretization schemes available in that package, we use the schemes 
with better smoothness properties. We use the discretize-then-optimize approach. Since we have a 
low dimensional design space and a rather simple grid generation scheme, we believe this is sensible. 
However, given our experiences, we believe this approach has to be rethought if more complex 
discretization schemes are used. More details on the discretization schemes are provided in Sections 
4.9.1 and 4.9.4. 

Analysis Problem, Discretization, and Flow Code 

In this section we discuss the analysis problem underlying our design problem and its discretization. 
The analysis problem is the flow q around the airfoil governed by the steady state Euler equations 
for a perfect gas. We also outline the flow code ErICA used for the solution of the analysis problem. 
Although our optimization formulation is based on the all-at-once approach and our optimizer never 
needs to solve the Euler flow equations, we will extract several subtasks from the flow code ErICA. 
The presentation of the ErICA code will help to describe these tasks. 

The unsteady Euler equations for a perfect gas, written in integral conservation law form is given 
by 

where, in Cartesian coordinates, 

and 

Q={ 

^ / QdS+ f  . 
°t Jn Jsn 

F-nds = 0 (4.465) 

F = fj + Qk 

p pu pv 

pu 
► , T = < 

pu2 +p 
>,g = < 

puv 

pv puv pv2 +p 

pea J 
(ph0)u (ph0)v 
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with velocity components u, v, density p, total energy per unit mass e0 = e+(u2+v2)/2, with e being 
the internal energy per unit mass and pressure p, which for a perfect gas may be expressed by the 
relation, p= (-y-l)pe. The total enthalpy per unit mass is given by h0 = a2/('y-l) + u2/2 + v2/2 = 
eo + p/p, where a = \rypjp is the sonic velocity. Here, Q represents the conserved variables with 
q = [p u v p]T denoting the primitive variables, and, T and Q represent the inviscid fluxes. The 
problem domain is denoted by Q and SO. represents the boundary of the domain. 

Discretization of the Euler Equations 

For a given airfoil configuration, the shape of which is represented as a function of the design 
variables w, the analysis problem corresponds to the solution of the Euler equations of flow. The 
flow is simulated numerically using the solver ErICA (EuleR Inviscid Code for Aerodynamics) which 
was developed by Narducci. 

Computational simulations were performed on a C-type grid, which is wrapped around the 
airfoil. We only sketch the grid generation to fix some notation. The grid is generated algebraically, 
by the following procedure: We first distribute points on bottom boundary, corresponding to the 
airfoil surface and the trailing edge wake, and on the top boundary of the computational grid, 
corresponding to the far-field boundary. Once the boundaries are defined, we connect corresponding 
pairs of points on the top and bottom boundaries using straight lines. Grid cells and nodes are 
numbered by (j, k), where j refers to the horizontal position and k refers to the vertical position 
in the grid. Indices with k = 1 refer to nodes or cells on or at the airfoil, respectively. A typical 
201 x 53 grid is shown in Figures 4.48 and 4.49 with 121 points on the airfoil surface. In practical 
CFD codes more sophisticated grid generation schemes are used. Eventually, such grid generations 
have to be incorporated. However, in a first attempt to apply the all-at-once methodology to airfoil 
design, we preferred this simple grid because of the relative ease of generating the grid and because 
of its guaranteed smooth dependence on the design parameters (airfoil). 

Figure 4.48: The 201 x 53 grid. 

Given the grid, the ErICA code is used for the solution of the steady state Euler equations. In 
our version of ErICA a finite volume discretization using an upwind scheme with Van Leer Flux 
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Figure 4.49: Close-up View of the 201 x 53 grid. 

Vector Splitting is applied to compute the residuals. A MUSCL (Monotone Upstream-centered 
Scheme for Conservation Laws) differencing approach is used to interpolate the values of the state 
variables q from the cell centers to the cell faces. In order to fully capture the shock, we use third 
order interpolation of the fluxes. We use Van Albada's limiter to suppress oscillations in the flow 
solution. While other discretization schemes are available in ErICA, we selected these because of 
their better smoothness properties. See the discussion at the end of Section 4.9.1. A pseudo-time 
marching scheme is used to compute solution to the steady state Euler equations. 

As mentioned above, we use a cell-centered, finite volume formulation to rewrite the governing 
equations (4.465). For the (j, k)th grid-cell the (semi-discretized) residual in terms of the primitive 
variables is given by 

SjkM^ + Rjk(q, w) = 0, (4.466) 

where Sjk is the area of the (j, k)th subdomain, M = -§-Q is the Jacobian of the mapping between 

the conserved and the primitive variables, and Rjk = J2sic[es(F • n)As is the residual, where F is 
the inviscid flux and As is the length of the side. Summation is done over all sides of cell (j, k). 
Requiring (4.466) for all cells yields 

SM^+R(q,w)=0. (4.467) 

The residual is computed as 

Rjk(q, w) = \{F ■ n)A«l + \{F ■ n)As\ + \(F ■ n)As] + \(F ■ n)As] , (4.468) 
L Jj-i/2      Lx -lj+i/2      I Jfc-l/2      V Jfc+l/2 ' 

where [F-n]J±1/2 correspond to the inviscid flux, F-n, across the vertical cell faces, and [F-n]k±i/2 
corresponds to the flux across the horizontal cell faces, respectively. For a given cell face, we have, 

Fh=< 

pU 

pull + nxp 

pUv + hyp 

(ph0)U 

>, 

where U(= hxu + hyv) is the velocity normal to the cell face, and nx and ny are the Cartesian 
components of the normal to the cell face. As noted above, the residual is computed using an 
upwind scheme, with Van Leer Flux Vector Splitting, with third order interpolation via MUSCL 
differencing to interpolate the values of the state variables, q, from the cell centers to the cell faces, 
and with Van Albada's limiter to suppress oscillatory behavior in the flow solution. 
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The steady state solution corresponding to the semi-discrete equations (4.467) is computed using 
a pseudo-time marching scheme applied to (4.467). We consider the implicit scheme 

At 
M + Aq = -Rn, (4.469) 

where Aq = qn+1 - qn; qn = q(nAt). Here fjß denotes an approximation of the Jacobian -§zR- See 
below. The scheme (4.469) may be regarded as a simplified implicit Euler scheme since, 

«£-*"-»"-(f)nA,*-«»-(f)"A, 

The equation (4.469) is 'solved' by applying one step on an Alternating Direction Implicit (ADI) 
scheme. The resulting time-marching scheme is not accurate in time, but this is not required since 
we are only interested in steady state solutions. 

For a moment, suppose that (Jj:-R)n = (-§:R)n and that A = j-F. Then the equation of (4.469) 
corresponding to cell (j, k) is given by 

lj+l/2 
{lM+([{Ä.n)AS}ji/2+[{Ä.n)Asl 

+[(i-"Hfc_1/2
+[(i-"Hfc+1/2)

n}A^ - -*<*>• (4.470) 

See (4.466), (4.468). Instead of using A = -§iF, we make two simplifications to derive A. These 
increase the efficiency with which one step of the pseudo-time marching scheme can be performed. 
The first simplification is as follows. In the residual computation, flux terms like [(F-n)As]J+1/2 are 
calculated using Van Leer Flux Vector Splitting and MUSCL differencing with cubic interpolation 
of the values of the state variables q from the cell centers to the cell faces. ErICA analytically 
computes the Jacobians of the flux terms obtained using linear instead of cubic interpolation. The 
second simplification in computing A is made by partly suppressing the influence of the ghost-cells. 
Emphasizing the influence of the boundary conditions, the residual can be written as R(q, w) = 
■R(<7>qg(q),w), where qg are the values of the flow variables on the ghost cells. The boundary 
conditions are used to express these as functions of the flow variables q in the interior and of w: 
qg = qg(q,w). Thus, the derivative of the residual is of the form 

dR(q,w) = dR(q,qg,w)      dR(q,qg,w) dqg(q,w) 
dq dq dqg dq 

In ErICA the approximation 
dR(q,w) ^ dR(q,qg,w) 

dq      ~ dq 

(4.471) 

(4.472) 

is used to obtain A. 
Let A « jj-F denote the approximate flux-Jacobians derived using the two simplifications out- 

lined above. If we set A = ^, then A is a block pentadiagonal matrix. We split A = Ak + Aj, where 

Aj corresponds to the terms   (Ä ■ n)As + UÄ ■ n)As\ in (4.470) and Ak corresponds to 

the terms   {A ■ n)As + \{Ä ■ n)As in (4.470). The subscript j in Äj indicates that the 

matrix includes information of A along constant j-lines (vertical grid-lines). Similarly, Ak includes 
information of A along constant fc-lines (horizontal grid-lines). We also define T = -^SM. Now, 
(4.469) can be written as 

[r + An
k + I?] Aq = -Rn. (4.473) 
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We do not solve (4.473), but approximately factor 

and solve 
T + Äk 

The step Aq is computed by solving 

T-1 T + Aj Aq = -Rn (4.474) 

pAj]   A?   =   TA9l/2. 

The new flow iterate is 
q
n+x =qn + Aq. (4.476) 

The two simplifications in the flux-Jacobians -§-F leading to Ä « #F guarantee that (after sym- 
metric permutation) the matrices on the left hand sides of (4.475) are block tridiagonal. Thus, each 
subproblem in (4.475) requires a block tridiagonal matrix inversion, which involves a block LU fac- 
torization and a block matrix solve; the latter consists of forward and backward substitutions. An 
outline of the ErICA algorithm for the solution of the governing Euler flow equations, R(q, w) = 0 
for given w, is given in Algorithm 18. 

Algorithm 18 (ErICA) 

1 Given zvi. 

1.1 Generate C-grid, including ghost cells. 

1.2 Compute direction cosines and lengths for each cell face and the areas of each cell. 

2 Given qn. Compute residual: 

2.1 Impose Boundary Conditions. 

2.2 Compute Rjk = £sides(F ■ n)Aa. 

2.3 Compute ||fi||. 

2.4 If ||ß|| < tol, then output the result and stop; otherwise goto 3. 

3 Euler Implicit Time Integration. 

3.1 k = constant lines: 

Solve \T + Äk]
n Aq1/2 = -Rn. 

3.2 j = constant lines: 

Solve [r + ÄA   Aq = TAq1/2. 

3.2 Update State: qn+1 = qn + Aqn. Set n = n + 1 and goto 2. 

Airfoil Shape Parameterization 

The airfoil geometry is represented as the weighted combination of six shape functions 

6 

y(x/c) = ^2 WiViix/c). (4.477) 
i=i 
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Four of the shape functions are pre-existing airfoils, namely, NACA 2412, NACA 64i-412, NACA 
652-415 and NACA 642-A215. The shape functions 2/1-3/4 are standard. The two additional shape 
functions 1/5,2/6 are used to impose certain geometric closure conditions at the trailing edge of the 
airfoil. These shapes are given by 

2/5    = 

2/6 

x/c,   on upper surface, 

0,        on lower surface, 

0, on upper surface, 

—x/c,    on lower surface. 

Since these functions are used to close the airfoil at the trailing edge, the weights 075 and w& are 
fixed in terms of 071-074. We require that 

yus(i) = yu(i) = 0, 

which yield the following relations 

^5      =      -[j/l„.(l)07l+J/2u.(l)n72 + I/3u.(l)a73 + l/4u.(l)t!74], 

^6      =      [l/l,.(l)a7l + y2,.(l)c72+ 1/3,, (1)073 + J/4,,(l)tI74], 

where subscripts us and Is refer to the upper and lower surfaces, respectively. An efficient approach 
to implement the above is to close each airfoil 2/i_2/4 individually to obtain 2/1-J/4, and use these as 
our design bases. We have 

4 
y(*/c) = X>dfc(a:/c). (4.478) 

t=i 

4.9.2    The Design Problem 

Given {07*}, the flow q around the airfoil is governed by the Euler equations for a perfect gas. The 
design problem is formulated as follows: 

max CL (9,07) (4.479) 

such that 

R(q,w) = 0, (4.480) 

CD(<Z,07)<CDmax, (4.481) 

5mi„ < S(w) < Smax, (4.482) 

*Mj(w) > *min. (4.483) 

where 07 = {o?j}, and q =[puv p]T denote the primitive variables of flow, with the usual notation. 
Equation (4.480) refers to the discretized steady state Euler equations of flow. The drag, Co, in 
this case, is the wave drag. The lower limit on the area, 5, is imposed so that the airfoil does not 
become too thin, a requirement for structural integrity. The upper limit is imposed to avoid thick, 
unrealistic airfoils. Equation (4.483) represents a bound on the trailing edge angle imposed to avoid 
situations in which the upper surface can go below the lower surface. See below. The free-stream 
conditions are based on Mach number M = 0.75 flow at angle of attack a = 0. 

The state equation (4.480) was discussed in Section 4.9.1. We briefly describe the computation 
of the aerodynamic forces used to compute Ci,(q,w) and Co(q,w), and the trailing edge condition 
(4.483). These are fairly standard, but are included for completeness. 
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The aerodynamic forces are computed by numerically integrating the pressure over the surface 
of the airfoil. The normalized forces normal and tangential to the airfoil chord line are respectively 
given by, 

2       J/ 

Poo »oo   .    . PooVc 

 2_ 

J=3o 

Of 

C
T   =   —rrYlp^yj+^'yj^' 

3=0» 

where (j, k), k = 1, j = j0,... ,jf, denote the grid points on the airfoil surface. We compute the lift 
and drag forces respectively as, 

CL    = CN COS a — CT sin a, 
(4.484) 

CD    = CN sin a + CT COS a. 

The dependence of the lift and drag coefficients on the state q and the design w can be determined 
from (4.484). 

The area of the airfoil (for unit chordlength) is given by 

/   Vusdx-  /   yisdx. 
Jo Jo 

Here yus, y\s represent the upper and the lower surface, respectively.   Representing the airfoil in 
terms of the basic (closed) airfoils (4.478), we have 

rl    4 rl    4 
s  =      Y]wiyiusdx- / y2^iyusdx 

=   ^2wi(      Vi^dx- j   yiisdx)  = "^rUiSi. 

where Si correspond to the areas of the individual airfoils. The areas of the individual airfoils can 
be computed at the beginning of the design cycle. For given w the area is then simply computed as 
the weighted sum of the areas of the given (closed) airfoils. 

Our parametric representation of the airfoil (4.478) allows for situations where the upper surface 
can go below the lower surface of the airfoil. Such situations were actually encountered in our 
preliminary attempts at optimization. Hence, we need to impose an additional constraint to prevent 
such physically incompatible configurations to arise. This is done by constraining the trailing edge 
angle of the airfoil. The trailing edge angle is given by tan_1(j/,'s(l)) - tan_1(j/uS(l)), which is 
approximated by 

6TE = y{s(i)-y'us(i)- 

Using the (approximate) trailing edge angles 6fEi of the four basic airfoils, this can be written as 

4 

STE = ^2 w^TEi ■ (4.485) 
i=l 

It was found sufficient to impose the requirement (4.483) to ensure that the upper surface does not 
go below the lower surface. Note that while the above approximation of the trailing edge angle is 
fairly crude, it does yield a constraint that is easy to compute and achieves the desired effect. 
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4.9.3    Optimization Algorithm 

The optimization algorithm used for our computation is a version of the trust-region interior-point 
SQP methods called TRICE for solving 

min        J{q,w), (4.486) 

s.t.        R(q,w)=0, (4.487) 

Wmin < w < wmax. (4.488) 

Clearly, (4.486)-(4.488) is a particular case of (4.449)-(4.451). In this section we give a brief descrip- 
tion of the algorithm. We leave out many technical details and focus on how the algorithm interfaces 
with the flow solver. An important aspect of the TRICE implementation is that application specific 
subtasks in the optimization are separated from the optimizer TRICE and can be provided by the 
user. In our case this allows us to provide approximate solutions to linearized state equations and 
adjoint equations computed by a modification of the flow code ErICA. See also Section 4.9.4. Since 
(4.488) corresponds to (4.451) with a G independent of q, the Lagrange multiplier A is determined 
by (4.457). We use the equation (4.457) to define A = \{q,w). 

If we define a diagonal scaling matrix D(q,w) G 2Rn"-xn«' with diagonal elements 

(D{q,wj) 
„-«;)?    if   (T(q,w)TVJ(q,w)).<0, 

■tflmin)?     if    (T(q,w)TVJ(q,w)).>0, 

then the first order optimality conditions (4.456) can be equivalently written as 

R(q,w)=0, 

D(q,w)2T(q,w)TVJ(q,w) = 0, 

(4.489) 

(4.490) 

and tumin < w < wmax. 
This class of algorithms generate a sequence of iterates (qk,Wk), where Wk is strictly feasible 

with respect to the bounds, z.e.iümin < Wk < u>max (hence the term interior-point method). The 
algorithms can be motivated by applying Newton's method to the system of nonlinear equations 

"(4.490) where the w component is kept strictly feasible with respect to the bounds, i.e.iumm < 
w < Wmax- The step s = (sq,sw) is decomposed in to a quasi-normal step sn and a tangential 
step s*. The role of the quasi-normal step sn is to move towards feasibility. It is of the form 
sn = (s°,0). The (^-component s° is related to the Newton step applied to solve R(q,Wk) — 0, 
for given Wk- The role of the tangential step is to move towards optimality. It is of the form 
s1 = T(qk,Wk)sw = (-RqiqkjWk^RwiQkiW^SwiSw), where T(qk,Wk) is the representation of the 
null-space of the linearized state equation defined in (4.461). The iD-component sw of s* is related 
to a quasi-Newton step for the reduced problem (4.453), (4.454). 

The matrix D(q,w) is in general not differentiable, but this nondifferentiability is benign and 
does not interfere with the fast convergence of Newton's method. A linearization of (4.490) around 
qk,Wk gives 

{Rq)k*q + (Rw)kSw      =      ~Rk, (4.491) 

(DlT^lw)£k+[0\Ek])lSj)    =    -DlTZVJk. (4.492) 

Here we have used the subscript k to denote evaluation of functions at qk,Wk-  In (4.492), 0 de- 
notes the nw x nq matrix with zero entries, £(q,w, A) = J{q,w) + XTc(q,w), WJ    Mq,w,X) = 

d(qw) Mfl'w) + ^Tc(9iu')]> anc^ E(QI
W

) is the 2Rn",xn"' diagonal matrix 

(E(q,w))ii = \(T(q,w)TVJ(q,w)).\ 
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replacing the in general not existing term [jr^rD2(q,w)]T(q,w)TVJ(q,w). 

Since the solution of the linearized state equation (4.491) can be written as 

s = sR + Tksw, (4.493) 

where s11 = (-(Rq)k
X.Rfc,0)T and Tk is given by (4.461). 

By using (4.493) we can rewrite the linear system (4.491)-(4.492) as 

s = sn + Tksw, (4.494) 

(Dk1?VlxekTkDk + Ek) DZlsw = -DkT?(v?,ilB)*jfe*
B + VJk), (4.495) 

The Newton-like step now is the solution of (4.494), (4.495) with Dk replaced by Dk, where Dk 

is defined by (4.489) with T^VJk replaced by Tk
T[Vfqw)eks

n + VJk}. This change of the diagonal 
scaling matrix is based on the form of the right hand side of (4.495). 

One can that if (qk,wk) is close to a nondegenerate minimizer (q*,w*) which satisfies the second 
order sufficient optimality conditions, the matrix on the left hand side of (4.495) is positive definite. 
Therefore, (4.495) can also be interpreted as the optimality condition of a quadratic program in sw. 
To globalize the convergence and to enhance robustness of the algorithm, a trust-region globalization 
is added. Let Ak be the trust radius at iteration k. The g-component of sn is computed by 
approximately solving 

minimize     \\\{Rq)k{sn)q + Rk\\2 

subject to    ||(sn)9|| < Afc. 

Given sn, the step in w is computed by approximately solving 

(4.496) 

minimize    (Tfc
T (Hka% + VJk)f sw + \sl {T][HkTk + EkD^2) sv 

subject to    11-Dfc ^„H < 6k. 
(4.497) 

Of course, we also have to require that the new iterate is in the interior of the box constraints. To 
ensure that wk + sw is strictly feasible with respect to the box constraints we choose ok € [er, 1), 
a e (0,1), and compute sw with ak(wmm -wk) < sw < crk(wmin -wk). The quadratic minimization 
problems (4.496) and (4.497) only needs to be solved approximately. For example, an approximate 
solution of (4.496) is given by 

(s»)q = -tKÄ^jfc]-1^, (4.498) 

where t = 1 if IIKA,)*]"1^!! < Ak and t = A.fc/||[(JR9)A:]-
1

JRfc|| < Ak otherwise. 
An approximate solution of (4.497) can be computed using a modified conjugate gradient method. 

If the reduced Hessian T^HkTk is approximated by a quasi-Newton update, then the solution of 
(4.497) is relatively inexpensive. The cost of computing the 'reduced' gradient T^(Hks% + VJk) 
dominates the cost of solving (4.497). 

The main steps of the trust-region interior-point SQP scheme are outlined in algorithm 19. 
We briefly sketch the information that the SQP algorithm 19 requires from the application pro- 

grams. If (4.498) is used, then step 2.1 requires the solution of a linearized state equation. The 
computation in step 2.2 involves the solution of an adjoint equation, see the definition (4.461) of 
T(q,w). If a quasi-Newton approximation is used to replace the the reduced Hessian T^HkTk, 
then step 2.3 can be implemented very efficiently using a modified conjugate gradient method. The 
application of Tk in step 2.4 requires the solution of another linearized state equation. See (4.461). 
Computations involving the solution of one linearized state equation and one adjoint equation may 
be needed in step 2.8. This depends on the update used. The influence of inexact derivatives is 
important in our application since we use a pseudo-time marching (iterative) scheme to compute ap- 
proximate solutions to linearized state equations and to the adjoint equations. Moreover, additional 
approximations, outlined in Section 4.9.1, are applied in these computations as well. 
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Algorithm 19 (TRICE) 

1 Given Ho and Ao- 

2 For k = 0,1,2,... do 

2.1 Compute s£ by approximately solving (4.496). 

2.2 Compute T^{Hks
n

k + VJk). 

2.3 Compute sw with ak{wm\n — wk) < 
(4.497). 

sw < crk(wmax - - wk) by approximately solving 

2.4 Compute s = sn + s* = sn + Tksw. 

2.5 Compute A by solving (4.457) with q = qk + sq, w = wk + sw. 

2.6 Update the trust region radius Ak and decide if qk + 
the new iterate. 

Sq, wk + sw can be accepted as 

2.7 If s is rejected set qk+\ = qk, wk+i 
Otherwise, s is accepted; set qk+\ = 

= wk, and Afc+i = 
= qk + sq, wk+i = 

= Afc. 
wk + sw and Afc+i = A. 

2.8 If exact second order information is 
imation. 

not used, update the (reduced) Hessian approx- 

A final remark on the handling of inequality constraints is in order. In our case the design space 
is small nw = 4 and other approaches such as projection methods or active set methods can likely be 
used with similar performance to handle the inequality constraints (4.488). However, wing designs in 
industrial settings may involve up to 500 design parameters. In this case an interior point approach 
promises to be superior. 

4.9.4    Numerical Implementation 

Handling the Inequality Constraints and Reformulation of the Optimization Problem 

The current version of TRICE only solves problems of the form (4.486)-(4.488). Hence we need to 
recast the design problem (4.479)-(4.482) into the form (4.486)-(4.488). This is done by handling 
(4.481) as a "soft" constraint using a penalty term and by transforming the design parameters. 

Instead of including the drag constraint (4.481) we add a penalty term P(g(CD/Comai - 1)) to 
the objective, where 

P(z)={ ~ (4.499) 
[ z2    z>0. 

Here g is a (scalar) penalty constant which can be used to increase emphasis on the drag violation. 
The addition of P{z) to the objective function J has the desired effect of penalizing the objective 
when the drag constraint is violated. Note that this is a "soft" constraint, in the sense that the 
optimizer will allow the drag constraint (4.481) to be violated as long as the penalty term added is 
not too large. This can be addressed to some extent by controlling the penalty constant g. 

The remaining constraints can be addressed using a mapping between the control variable, w, 
and the design weights, w. Rather than use the design weights as our control variables, we use the 
area of the airfoil and its trailing edge angle as control variables, as shown below. This enables us 
to address the issue of ensuring that the lower bound on the area and the trailing edge angle remain 
strictly enforced, by making use of the fact that we can place bounds on the control variables. We 
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use, as our control variables, 

w = W < 

where 

2 • (CTI - G73) 

2 • (W2 — VJi) 

2-S 

0.5 • SfE 

7 <5T£ 
ÖTJS = 

(4.500) 

Vmin 

and the scalar factor W has been added in order to be able to experiment with the scaling. Note that 
this results in a control space that is simply a result of a linear combination of the design weights, 
as should be evident from equations (4.485) and (4.485). Now, enforcing bounds 

2W < w3 < 2W ■ Smax 

"min 

strictly enforces the bounds on the area of the airfoil (4.482). Similarly, the bound, 

0.5W < w4 

imposes the constraint (4.483). The mapping (4.500) can be used to translate between w and w. Note 
that the above mapping was chosen so as to yield a low condition number for the transformation 
matrix providing the mapping between the weights and the controls. This was done with the 
philosophy that a change in the controls should produce roughly the same amount of change in the 
weights. This choice did yield improved performance in the optimization algorithm. 

The original design problem (4.479)-(4.482) is now recast as 

min,,«,    J{q,w) = -CL(q,w) + P(g(CD(q,w)/CDmai - 1)) 

s.t. R(q,w) = 0, 

Wmin < W < Wmax, 

which is of the form (4.486)-(4.488). 

Solution of the Linearized State and Adjoint Equations 

To solve the design problem using Algorithm 19 described above, we need to be able to do the 
following: 

• Provide an update sq in the state variable, given an update in the control variable sw by 
solving the linearized state constraint. 

• Solve the adjoint equation at a given point. 

These tasks can be performed using the same problem-solving structure applied in the flow solver 
ErICA. These tasks can be easily extracted from the flow code and only relatively few changes are 
needed. 

The modification of the ErICA code to compute approximate solutions to the linearized state 
equation is shown in Algorithm 20. The scheme outlined in Algorithm 20 solves an approximation 

(Äj + Äk + Ägj Sg + —{q,w)sw + R(q,w) = R(sq,sw,q,w) =0 (4.501) 

of the linearized Euler equations using a pseudo-time marching scheme analogous to the one applied 
in ErICA. Here q, w and sw are given and an approximate solution sq has to be computed. Note that 

166 



■§-R(q, w) is replaced by Aj +Ak + Ag. While in the residual computation, flux terms are calculated 
using Van Leer Flux Vector Splitting and MUSCL differencing with cubic interpolation of the values 
of the state variables q from the cell centers to the cell faces, only linear interpolation is used to 
calculate approximate Jacobians, see Section 4.9.1. This leads to the matrices Aj,Ak- However, 
boundary conditions are included in the residual computations, cf. (4.471). This is reflected above 
by the matrix Ag. The equation (4.501) is solved by driving an unsteady form of the linearized Euler 
equations 

SM~^T = -(Äj+Äk + Ag)sq - — (q,w)sw - R(q,w) = -R(sq,sw,q,w) = 0 (4.502) 

towards steady state. The factor SM is added to the transient term in order to make the above 
equation consistent with the discretized Euler equations (cf. (4.467)). The pseudo-time marching 
scheme used is identical to the one used in marching the nonlinear Euler equations, described above 
in equations (4.474)-(4.476), with the nonlinear residual, R replaced by the linearized residual, R. 
We can view this algorithm as simply an iterative method for solving the linearized state equation. 
Note that a relaxation factor ß is used to update the solution in the iterative process. Our numerical 
experiments showed that using ß = 1.25 yielded improved convergence rates. Also, note that there 
is an external loop in the iterative process monitoring the residual. This is in order to ensure that 
the residual does not diverge. If the norm of the residual is greater than some predetermined value, 
-Rmax, then the iterative process is restarted with a reduced time step At. This is necessitated 
by the fact that the Jacobians can be ill-conditioned if the solution is far from feasible, resulting 
in a divergent iteration. Reducing the time step had the effect of alleviating the ill-conditioning. 
Using Rmax = 12||Ä°|| seemed adequate for our purposes. A factor of 12 is used because in some 
instances, the iterative process initially increased the residual but managed to recover. Clearly, these 
rules are somewhat ad-hoc and more sophisticated techniques could have been applied to increase 
efficiency. Since we are concerned with more fundamental issues arising in the all-at-once approach, 
optimizing performance is beyond the scope of this study. Note that Algorithm 20 only involves one 
Jacobian evaluation and one nonlinear residual evaluation. The Jacobian undergoes one block LU 
factorization and the iterative loop only involves block matrix solves, and evaluation of the linearized 
residual, which simply requires relatively cheap block matrix multiplications and additions. 

Similarly, for the solution of the approximate adjoint equation 

(Äj + Äk+ Äg)X + +VgJ(q, w) = A{q, w)=0 (4.503) 

consider a "pseudo" time dependent adjoint equation, 

SMT^ = - ({Äj + Äk + Äg)
T A + V,J(zfc)) = -A, 

where J is the objective.  As in the solution of the linearized state equation, we replace £-R by 

Aj + Ak + Ag. We use the approximate factorization algorithm used in ErICA to iterate this 
equation in time, until the residual of the adjoint equation is sufficiently small, ideally A = 0. The 
procedure is as follows. We have, 

where Aj and Ak are Jacobian terms. The matrix of the left is factored approximately according to 
spatial directions 

[r + A,]T T~T [T + Äk]T AA = - A" 

This system is solved using the sequence 

AA1/2    =    -A [r + I,] 

[r + Äfe] 
■     T (4.504) 

AA   =   TTAA1/2 
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Algorithm 20 (Linearized State Equation Solver) 

1 Given q, w, sw, tol. 

1.1 Generate grid. 

1.2 Compute: Aj(q,w), Äk(q,w), Äg(q,w), Rw(q,w). 

1.3 Compute: R° = R(q,w) + Rw(q,w)sw. 

1.4 Set: n = 0, sq" = 0. 

2 LU Decomposition. 

2.1 Compute: LkUk = T + Ak 

2.2 Compute: LjUj = T + Äj 

3 Euler Implicit Time Integration. 

3.1 k = constant lines: 

Solve LkUkAsqx/2 = -Rn. 

3.2 j = constant lines: 

Solve LjUjAsq = T ■ Asqi/2. 

3.2 Update sq: s£+1 = s£ + Asq. Set n = n + 1 and goto 4. 

4 Compute Linearized Residual 

4.1 Compute: Rn = \AJ + Ak + Ag sq
n + R° 

4.2 Compute: ||fin||. 

If ||Än|| < tol, set sq = sq
l. Return. 

Else, if ||Än|| < Ämax, goto 3. 

Else, restart. Set: At = 0.5Ai, n = 0, sq
n = 0, and goto 2. 

An+1 = An + ßAX 

The above iteration is performed until the residual of the adjoint equation, A, is reduced to zero. 
The adjoint computation is outlined in Algorithm 21. Note, that while computing the residual of 
the adjoint equation, and the linearized state equation, we include the terms Ag corresponding to 
the boundary conditions. 

Since we are interested in the solution of the steady state adjoint equation (4.503), we could have 
just as well reversed the sequence above, i.e.solve 

[T + Ak 

[T + ÄJ 

AA1/2    =    -An 

(4.505) 
AA   =   TTAA1/2 

and set An+1 = An + ßAX. This would give us an algorithm which is exactly the same as that 
used in the linearized state algorithm, except the matrices would be transposed. However even 
though the pseudo-time marching is just an iterative scheme for solving (4.503), we preferred to use 
the transpose of the pseudo-time process (4.502) to calculate the adjoints. Numerical experiments 
showed that (4.504) had a slightly superior convergence behavior than (4.505). 
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Once again an outer loop monitors divergence of the residual. We use Amax = 12||A°||. Numerical 
experiments showed that the computation of the adjoint was more susceptible to producing divergent 
results, and hence care has to be taken in choosing the value of the relaxation factor ß. We choose 
ß = min(1.25,1-0.12 log(10||Al||)), which has the desired effect of underrelaxing when the solution is 
crude, in order to reduce the possibility of divergence, and overrelaxing when the solution is refined 
in order to increase speed of convergence. Also, note that we do not start with A = 0. Rather, 
we start from the previously computed estimate of the adjoint variable. Our experiments showed 
that this yielded significant savings in terms of the number of iterations. However, if the iteration 
proves to be divergent, then we reset A to zero. As we have noted already for the linearized state 
solver, these rules are somewhat ad-hoc and more sophisticated techniques could have been applied 
to increase efficiency. This will be done in future studies. As with the procedure for the linearized 
state equation, this iteration only involves a single Jacobian evaluation. 

Algorithm 21 (Adjoint Equation Solver) 

1 Given q, w, tol. 

1.1 Generate grid. 

1.2 Compute: Äj(q,w), Äk(q,w), Äg(q,w), Rw(q,w). 

1.3 Compute: A0 = VqJ(q,w). 

1.4 Set: n = 0, A" = Aprev. 
(Aprev is the Lagrange multiplier estimate at the previous iteration) 

2 LU Decomposition. 

2.1 Compute: LkUk = \T + Ak]. 

2.2 Compute: LjUj = \T + Äj\. 

3 Compute Adjoint Residual 

3.1 Compute: An = Äj+Äk + Ag]   A" + A° 

3.2 Compute: ||An||. 
If ||An|| < tol, set A = A". Return. 

Else, if ||An|| > Amax, restart. Set: At = 0.5At, n = 0, An = 0, goto 2. 

4 Euler Implicit Time Integration. 

4.1 j = constant lines: 
Solve LjUjAXx/2 = -A". 

4.2 k = constant lines: 
Solve Lfef/fcAA = T ■ AA1/2. 

4.3 Update Adjoint: An+1 = A" + AA. Set n = n + 1 and goto 3. 

4.9.5    Numerical Results and Discussion 

This section reports on some of numerical experiments conducted using the TRICE interior-point 
trust-region SQP optimization algorithm (see Section 4.9.3) coupled with the modification of the 
ErICA flow code (see Sections 4.9.1 and 4.9.3) to solve the airfoil design problem stated in Sections 
4.9.2 and 4.9.4. The presentation of results is followed by a discussion of observed difficulties, possible 
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Figure 4.50: Grid Convergence Study for NACA 2412 

Table 4.13: Numerical Results for Airfc il Desig n Problem 

Grid Size Co», Data 1371 CE72 C73 Z&4 cL Co 5 

51 x 14 0.04 

Initial 1.0000 0.0000 0.0000 0.0000 0.4132 0.0469 0.0823 

Final 0.2538 0.1793 -0.1369 0.5793 0.5263 0.0403 0.0770 

101 x 27 0.02 

Initial 0.2538 0.1793 -0.1369 0.5793 0.5722 0.0251 0.0770 

Final 0.2812 0.1049 -0.0760 0.5314 0.5227 0.0201 0.0750 

151 x 40 0.014 

Initial 0.2812 0.1049 -0.0760 0.5314 0.5266 0.0159 0.0750 

Final 0.3059 0.0593 -0.0313 0.5006 0.5037 0.0142 0.0750 

201 X 53 0.012 

Initial 0.3059 0.0593 -0.0313 0.5006 0.5044 0.0126 0.0750 

Final 0.3153 0.0429 -0.0154 0.4893 0.4955 0.0120 0.0750 

301 X 79 0.010 0.3153 0.0429 -0.0154 0.4893 0.4959 0.0103 0.0750 

is relatively efficient in finding the given solutions. Consider, for example, the computational effort 
required for the 51 x 14 grid. We require 3786 residual evaluations, 5004 Jacobian evaluations, 
10008 block LU factorizations and 454948 block matrix solves. Compare this to the effort required 
to obtain a single analysis solution: We require approximately 1000 pseudo-time integration steps 
to produce a converged solution which requires 1000 residual evaluations, 1000 Jacobian evalua- 
tions, 2000 block LU factorizations and 2000 block matrix solves. Discounting the discrepancy in 
the number of solves, the computational effort required by TRICE is roughly equal to the effort 
required to perform 5-6 flow analyses, which is very cheap.   It should be noted that though we 
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Figure 4.51: Results obtained using TRICE for Airfoil Design Problem 

require a large number of block matrix solves, this just involves forward and backward substitutions 
which is fairly cheap. As we have indicated earlier, this paper concerned with the feasibility of the 
all-at-once approach for airfoil design. Computational efficiency was not a prime concern for the 
interface of the ErICA flow subroutines with the TRICE optimizer. Several improvements can be 
made. For example, we recompute the Jacobian information every time that we require to solve the 
linearized state equation or the adjoint equation. Since the Jacobian will only change if the iterate 
(q, w) changes, a more efficient implementation would require only one Jacobian evaluation for each 
iteration of Algorithm 19. Moreover, our pseudo-time-stepping scheme for solving the linearized 
state and the adjoint equation can be improved which would lead to fewer pseudo-time-steps and 
fewer LU solves. Similar instances of implementing the code in a more efficient manner should yield 
significant savings from the elimination of redundant computations. 

Earlier, we have pointed out that the optimizer struggled to achieve the desired tolerances. We 
now discuss possible reasons for this and also possible remedies. We distinguish among three groups. 
The first group is related to the information that is provided to the optimizer, the second group is 
related to the optimization formulation, and the third group is related to the airfoil design problem 
and its discretization. 

The TRICE optimizer requires from the user the solution of linearized state equation and adjoint 
equation. We extract this information from the ErICA code. However, we use simplifications in the 
computation of the constrain residuals. While the residual R(q, w) is evaluated using Van Leer Flux 
Vector Splitting and MUSCL differencing with cubic interpolation of the values of the state variables 
q from the cell centers to the cell faces, the ' Jacobians' of the flux terms are obtained using linear 
instead of cubic interpolation. Thus we only use approximate Jacobians. These approximations 
become better as the grid is refined, but on a given grid a certain error level cannot be removed. 

172 



Table 4.14: Computational History for Airfoil Design Problem using TRICE 

Grid 

Size 

Total 

Iterations 

Successful 

Iterations 

Number 

of Restarts 

# Residual 

Evaluations 

# Jacobian 

Evaluations 

#LU 

Factorizations 
# Solves 

51 X 14 388" 211 12 3786 5004 10008 454948 

101 X 27 44 26 1 313 437 874 73588 

151 x 40 27 11 1 506 518 1036 81953 

201 x 53 19 5 1 386 425 850 137768 

"Iteration was stopped with a norm of the reduced gradient of 1.5 • 10      due to lack of progress. 

This explains our earlier observation that the optimizer had more problems finding a solution relative 
to the given tolerances on the coarse grid than on the fine grid. The Jacobians used are only 
asymptotically correct and the discrepancies between true Jacobians and Jacobians used become 
smaller as the mesh is refined. On coarse grids, we try to oversolve the problem. We expect a 
significant improvement in performance if true Jacobians are used. However, in that case some 
complications may arise from the differentiation of the Van Albada flux limiter. This matter will 
be investigated in depth in future research. We point out that this behavior does not contradict the 
ability of the optimizer to handle inexact information. The optimizer can only perform successfully 
for arbitrary stopping tolerances if the degree of inexactness can be adjusted by the optimizer to the 
progress it makes towards computing the solution and thereby to the required tolerance. One needs 
to adjust the stopping tolerances to the accuracy in function values. In fact, we could have relaxed 
the tolerance on the coarse grid and thereby reduced the number of coarse grid iterations, while 
maintaining the performance on the finer grids. However, since an exact error bound for the quality 
of the Jacobians used is not available, we believe that one tends to try to oversolve the problem. 
Hence, the performance displayed in Table 4.14 is what one should expect in the experimentation 
phase of the algorithm. These experiments can be used to define grid-dependent tolerances which 
will lead to a better performance than that shown in Table 4.14. 

We used the optimizer TRICE because of its capability to accept solutions of linearized state 
equations and adjoint equations computed using application specific solvers. A reformulation of the 
problem presented in Section 4.9.4 was necessary, since the current version of TRICE only solves 
problems of the form (4.486)-(4.488). Some inefficiencies and difficulties might be attributed to this. 
It is expected that these will be resolved with future version of the optimizer for solving the more 
general problems (4.479)-(4.483). A high percentage of the number of block matrix solves required 
to solve the design problem (refer Table 4.14) can be attributed to the large number of iterations 
required to obtain a converged solution for the adjoint equation. This is especially true for the finer 
grids, which may be caused by ill-conditioning in the grid. We return to this issue below. The high 
number of solves can also be partly attributed to the penalty function approach we use to address the 
drag constraint (4.499). When the drag constraint is violated the gradient of the objective function 
with respect to the state variables becomes very large, which in turn means that the residual of the 
adjoint equation is very large and requires a large number of iterations to converge. The penalty 
term (4.499) also causes objective function to change abruptly when the drag constraint is violated. 
This effect is currently inadequately reflected in the model (4.497) used to compute the step and led 
to a large number of unsuccessful iterations. 

The third group of reasons for difficulties in the solution process is somewhat related to the 
first one and concerns the airfoil design problem and its solution. There are known cases where 
nonunique solutions of the discretized Euler equations can be obtained for certain airfoils. While 
the all-at-once approach never requires the solution of the Euler equation, our implementation 
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uses the solution to the linearized equations and adjoint equations. Existence of these solutions 
and their dependence upon right hand side data need to be investigated. Another possible reason 
for the difficulties in convergence behavior is the fact that the simple algebraic grid that we use 
may be ill-conditioned. Since the primary purpose of the present study was to demonstrate the 
concept of using the all-at-once approach for solving the design problem, we have not investigated 
the effect of the grid on the solution process. As a result, no attempt has been made to ascertain 
the quality of the grid. It was, in fact, observed that the convergence behavior exhibited by the flow 
solver deteriorates as the grid is refined, which could be an indication of ill-conditioning. Other grid 
generation techniques and airfoil surface discretizations should be investigated in this context. An 
inclusion of such techniques in the all-at-once approach requires a careful analysis of grid sensitivities 
which are needed in the computation of Rw(q,w) and Jw(q,w). Finally, as we have pointed out in 
Section 4.9.1, the airfoil design problem is an infinite dimensional problem. The infinite dimensional 
problem, its discretization, and the optimization approach have to be analyzed jointly to derive 
robust and efficient solution methods. In a simplified model problem the benefits of such an analysis 
were demonstrated previously by the authors and were shown to lead to 10-15% reductions in 
optimization iterations. Provisions for the inclusion of infinite dimensional problem structure into 
the optimizer have been made. 

4.9.6    Conclusion 

We have implemented the all-at-once approach to solve an optimum airfoil design problem. The 
airfoil design problem was formulated as a constrained optimization problem in which flow variables 
and design variables are viewed as independent variables and in which the coupling steady state 2-D 
Euler equation is included as a constraint. To implement this approach, we have combined an existing 
optimization algorithm, TRICE,- with an existing flow code, ErICA. Details of the implementation 
were given and difficulties arising in the implementation were discussed. Our numerical results 
indicate that the cost of solving the design problem is approximately six times the cost of solving a 
single analysis problem. This is consistent with the expectation that the decoupling of flow variables 
and design variables in the all-at-once approach makes the problem less nonlinear and can increase 
the efficiency with which the design problem is solved. Difficulties observed in the solution process 
were discussed and some future research issues were addressed. 
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Figure 4.52: Optimal Shape Design Problem 

4.10    Optimal Shape Design in Forced Convection Using Adap- 
tive Finite Elements 

In this section, we study an optimal design problem involving the shape of a channel wall. We seek 
the shape of the wall which maximizes the ratio of heat transferred off of it to the pressure head 
required to drive the flow. The problem is solved with the sensitivity equation method, coupling 
a trust-region optimization algorithm with gradient information supplied through the (continuous) 
sensitivity equation. To ensure sufficient accuracy at all of the intermediate designs, both the flow 
and the sensitivity equations are approximated with an adaptive finite element method, where the 
adaptation is performed based on error estimates using a local projection of the flow and sensitivity 
quantities. 

4.10.1    Problem Description 

Shape Design Problem 

We introduce a model problem which will be used to illustrate the optimal design method discussed 
in the next section. This shape optimization problem, illustrated in Figure 4.52, is to find the shape 
of an obstruction, ra, in the channel wall which maximizes the ratio of the heat transferred off of it 
to the pressure head required to drive the flow. For this problem, we model the forced convection 
using the 2D steady Navier-Stokes and energy equations, 

u-Vu   =    -Vp+4-Au (4.506) 
Re 

Vu    =    0 (4.507) 

u-VT   =    -jr-V AT, (4.508) 
RePr 

where the non-dimensional flow quantities are the velocity vector u = (u, v), the pressure p and the 
temperature T. The two fluid parameters Re and Pr represent the Reynolds number and Prandtl 
number, respectively. These equations are solved on the parameter dependent domain Cl(Ta) subject 
to the following boundary conditions: 

u = 4y(l-y)   on Tin, T = 0   on Tin, 

r(u) • n — pn = 0 on routi T = 1    on Ta, 

u = 0 on T/ (rin U Tout), fcVTii = 0    on T/ (Tm U Ta), 

and v = 0 on T, where n is the unit outward normal, k is the thermal conductivity and T(U) is the 
fluid stress given by 

r(u) = n (Vu + (Vu)T) . 
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We consider a parameterization of the obstruction shape, 

ro(a) = ((x,y) y = - ( 1 - cos (Hr=^)),*e(*a,X6)}' 
which results in a smooth bottom surface. For brevity, further dependencies on ra will be referred 
to using a. The solution of the above equations (4.507)-(4.508) on the parameter dependent domain 
implicitly defines the flow quantities as a function of the obstruction shape. This dependence will 
be denoted by u(x,y;a), v(x,y;a), etc. The set of all admissible parameters is given by 

.4={ro(a)| a €(-1,1)}, 

the restriction of the parameter a is used to provide a reasonable geometry. 
The heat transferred off of Ta can be measured as 

Q(a)=  I  kVT(-,a)-n(-;a)dTa 

Using the integral form of the energy equation and applying the temperature boundary conditions, 
this can be written equivalently as 

Q(> '.a)= PCpU(-;a)T{-;a)dTout-        pcpu(-;a)T(-;a) dTia = pCj,u(-;a)T(-;a) dTout, 
•'Tout •'Tin •'Tout 

the second term vanishing due to the prescription of T = 0 at Tin. The pressure head required to 
drive the flow can be measured as 

P{a)=        p(-;o)u(-;a) drin- /     p{-;a)u(-;a) dTout =        p(-;a)u(-;a) dTin, 
Jria Jrom Jrin 

the second term vanishing due to the imposition of p = 0 at rout- We have also used the assumption 
that the velocity is fully developed at the inflow and outflow. These expressions allow us to define 
our design objective function as 

r(n\ - W _ Jr.ut ***>"(•; °)r(-;<0 dTout 
"'W - "DT~\ 

- f 7 w n^ • (4.509) pw       Jrinp(-;o)«(-;o) drin 

The optimal design problem we consider is 
Problem : (Optimal Shape Design) 
Find the shape of the obstruction, T* (or a*) such that 

J(a*) > J(a) 

for all T0 € A. 
At this time, we introduce another design objective function 

Ji(a) = ClQ(a) - c2P(a) (4.510) 

for positive constants c\ and C2, and we also consider its maximization. The creation of an appro- 
priate objective function is an art, one that design engineers need to consider carefully. In both J 
and J\, we have attempted to balance our real design objective, the maximization of Q(a), with a 
physical constraint on the pumping work P{a). Without this "constraint," the solution would be an 
obstruction leaving an inflnitesimally small channel area bringing all of the passing fluid as close to 
the "hot" obstruction as possible. To produce a realistic solution, the objective has been modified 
to include the physical constraint. However, as we shall see, how this constraint is implemented has 
a dramatic impact on the optimal design. 
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Approximate Shape Design Problem 

Since the flow and energy equations cannot be solved in closed form for this problem, we describe 
an approximate design problem. In this work, we considered an adaptive finite element strategy 
to approximate the flow and energy equations. A brief summary of this strategy is provided below 
for completeness and to introduce notation for later discussions. The equations are written in weak 
form, 

a(u,v)-(p,V-v) + (u-Vu,v)    =   0 (4.511) 

<V-u,«;)    =   0 (4.512) 

d(T,x) + (u-VT,x>    =   0, (4.513) 

for test functions v, w and \i where the bilinear forms are 

a(u,v) = —- / Vu : Vv dfi 
-Re Jn 

and 

«?>*> = nkf™--***1* 
and (•, •) is the standard L2 inner product on fi. The equations are solved using a mixed finite 
element method with Crouzeix-Raviart triangular elements (which have a piecewise smooth enriched 
quadratic basis for the velocity and temperature and a piecewise continuous bilinear basis for the 
pressure). The incompressibility constraint is treated with an augmented Lagrangian technique. 

The result of this approximation is a set of nonlinear algebraic equations which are solved using 
Newton's method. Thus, the nonlinear term in (4.511) is replaced by the term 

(uc-Vu,v) + (u-Vuc,v) 

in computing the Jacobian at the velocity uc and similarly for the nonlinear term in the energy 
equation, which is replaced by 

(uc-Vr,x> + <u-VTc,x). 
Note that the same Jacobian is obtained for Newton's method regardless of when the linearization 
is performed (before or after the approximation). 

For a given mesh (triangularization of the domain fi(a)), the resulting nonlinear system is solved 
for the quantities un, pn and Tn. The initial mesh which is generated for this approximation 
is unlikely to provide an accurate solution to the flow equations since the areas where there are 
sharp gradients of the flow variables are not known a priori. This may be particularly true if an 
automatic shape design algorithm is being constructed where minimal human intervention is used at 
the intermediate design calculations. Thus an adaptive mesh refinement strategy is coupled with the 
finite element algorithm. The strategy uses an estimate for the error on the current mesh to design 
a new mesh which has a prescribed error on each element, producing an "optimal mesh" which 
provides the best possible solution for the given computational resources. Of course, computing on 
this new mesh gives a better estimate for the error, so this strategy is used in an iterative process 
creating successively better meshes and interpolating the solutions from the previous mesh. 

To completely define the adaptive strategy, we briefly discuss the error estimator and the mesh 
size selection criteria we use. For computational efficiency, the Zienkiewicz-Zhu local projection 
technique is used to project the discontinuous flow and temperature gradients and the pressure 
onto a continuous finite element space. The rationale is that these quantities are continuous in the 
exact-solutions, therefore the difference between these computed quantities and their continuous 
projections (denoted by an overbar), 

I (T{U
N

) - 7(u")) : (r(uN) - 7(u")) |   ,     || (VTN - VT") • (VTN - VT») | 
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and 
pN -pN 

2 

provide reasonable predictions of the finite element error. While there are many ways these error 
estimates can be used to define a new mesh, we use a conservative approach where a new mesh size 
is predicted based on each of these error estimates and the minimum mesh size is selected. 

With a suitable approximation of the physical quantities available, denoted by uN, pN and TN, 
we now define the approximate shape optimization problem. Define 

QN(a)=  f    pCpu
N(-,a)TN(-,a)drout 

•'Tout 

PN(a)= f   pN(.;a)uN(-;a)dTin. 
'r 

Then the approximate design objective function is 

jN{a) = W$)        °r       J^W =0^(^-0^ (a). 

The approximate optimal design problem is then 
Problem : (Approximate Optimal Shape Design) 
Find the shape of the obstruction, T* (or a*) such that 

JN(a*) > JN(a) 

for all ra € A. 
In the next section, we consider an optimal design method for solving this approximate optimal 

shape design problem. 

4.10.2    The Sensitivity Equation Method 

The sensitivity equation method is used to find the optimal parameter a* in the approximate optimal 
shape design problem above. This method couples a trust-region optimization algorithm with gra- 
dient information provided by approximating the sensitivity equation, a partial differential equation 
describing the influence of the parameter a on the flow variables. This optimization algorithm was 
selected for its robustness properties, particularly for its convergence in the presence of errors in the 
gradient information. This robustness has been used to show convergence of the overall sensitivity 
equation method for some problems. 

We begin by implicitly differentiating the flow equations with respect to the design parameter a. 
Defining su = (|^, ||), sp = ff and sT = §£, we arrive at 

(4.514) 

(4.515) 

(4.516) 

u ■ Vsu + s„ ■ Vu   = T-,                       1       A 

Re. 
V-su    = 0 

su • VT + u • VsT    = ^ „ AsT- 
RePr 

The associated boundary conditions are 

su = 0 onr/(raurout), 

T(SU) • n - spn = 0 on rout, 

su = -Vu • (cj>x, 
rp 

<t>y) on ra, 

ST = 0 on rin, 

kVsT ■ n = 0 on ry (Ti„ u r„), 

sT = -VT ■ (<t>x 

rp 

<t>y) on ra. 
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The form of all of the boundary conditions are immediately obvious except for those on Ta- We 
look at the conditions for ST, the form for su is obtained in a similar fashion. On the boundary ro, 
T = 1. The value of T on this surface is fixed, regardless of the position of ro. Thus, the material 
derivative of T on this surface with respect to a is zero, implying 

ST + VT' H4cos( 1 l        X-Xa 
- COS I Z7T 
^ \       Xb       Xd 

= sT + vT-(<t>x,<i>yy =0 

where the vector (<l>x,<l>y) describes how the boundary coordinates change with the parameter a. 
This expression provides the boundary condition for ST- 

The linear sensitivity equations above have the same form as the linearization of the flow and 
energy equations leading to their efficient solution. This is because the linearization of the term 
u • VT is implemented in the same way regardless of the order of approximation and linearization. 
Furthermore, the boundary condition types (Dirichlet, Neumann) are the same for the state and sen- 
sitivity equations. Thus, using the finite element scheme to approximate these sensitivity equations 
leads to an efficient solver for the sensitivity information. 

In this work, we extend the adaptation strategy to include the sensitivity equations. There is a 
trade-off here, since the sensitivity equations need to be solved on every intermediate mesh (requiring 
the work of one Newton iteration on that mesh). This is balanced by the fact that more accurate 
sensitivity information is computed. 

Analogous to the flow and energy equations, the local projection technique is used to project 
the velocity sensitivity gradients, the pressure sensitivity and the thermal flux sensitivity onto the 
continuous finite element basis. Then, the following error estimates 

I (r(s?) - 7(i£)): (r(s?) - 7(ö) I       I (vs£ - VsJ) ■ (v4 - vsj) I 

and 
,N SN 

are used to predict new mesh sizes. Now, the minimum mesh size predicted by the three error norms 
above along with the three error norms for the flow and energy equations is used in constructing the 
next mesh. 

Gradient Calculation 

The gradient of the design objective function is given by 

8 Q'(a)P(a)-Q(a)P'(a) 
d^J{a) = PW)  

where 

and 

Q'(a)=f     pei,f^(-;o)r(-;o) + «(-;a)sT(-;a))  drout 

P'(a)=  f    UP(-;a)u(-;a)+p(-;a)J|(-;a))  drin. 

This can be approximated using the finite element solutions for the state and sensitivity equations 

described above. The resulting approximation, denoted by (g^.7) , is used by the trust-region 
optimization algorithm to produce the next iterate on the parameter a. The above expressions for 
Q'(a) and P'(a) can obviously also be used to evaluate the gradient of J7i. 
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a.) Adapting for flow variables only 

b.) Adapting for flow and sensitivity variables 

Figure 4.53: Mesh Comparison 
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Figure 4.54: Velocity Sensitivities 

4.10.3    Numerical Results 

First Design Objective 

We solve the problem of maximizing JN{a) described in Section 4.10.1 using the sensitivity equation 
method. The channel has unit width and the obstruction is located at xa = 5, x;, = 10. Using five 
channel widths past the obstruction assures that we satisfy our assumption of a fully developed 
velocity profile at the outflow. The non-dimensional parameters were selected as Re = 100 and 
Pr = 0.71. 

In Figure 4.53, we show the meshes which are produced with and without adaptation on the sen- 
sitivity variables. Note that for this geometry, the velocity and pressure are solved adequately with 
an arbitrarily coarse mesh (being quadratic and linear, respectively). Thus the only adaptation that 
occurs is for the temperature gradient. However, the sensitivity variables require more refinement 
above the curve Ta due to the boundary conditions, see Figures 4.54, 4.55 and 4.56. Note that the 
last two figures show essentially the same contours whether adaptation is performed on the sensi- 
tivity quantities or not. There is some difference above ra, but this difference is lost downstream. 
Furthermore, as seen in Table 4.15, the sensitivity information is computed much more accurately 
according to our error estimators. However, this comes at a cost of not calculating the temperature 
as accurately. 

Table 4.16 shows the convergence history of the optimization algorithm. The adaptation cycle 
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Figure 4.55: Pressure Sensitivity Comparison 
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Figure 4.56: Temperature Sensitivity Comparison 
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Table 4.15: Relative Error Estimates for Iteration 0 

Adapting only on Flow Quantities 

Cycle Nodes r(u) P VT r(su) Sp VsT 

0 1105 2.897E-09 6.199E-10 1.423E-01 5.432E-02 7.920E-03 5.665E-02 

1 1432 4.041E-09 6.494E-10 6.311E-02 4.352E-02 5.238E-03 4.709E-02 

2 1617 4.451E-09 6.944E-10 3.527E-02 4.650E-02 6.062E-03 4.179E-02 

3 2062 5.246E-09 7.357E-10 1.962E-02 3.501E-02 4.368E-03 3.142E-02 

4 2893 6.777E-09 8.888E-10 1.240E-02 2.532E-02 2.887E-03 1.733E-02 

5 4567 9.437E-09 1.130E-09 7.345E-03 1.561E-02 1.836E-03 1.217E-02 

6 7051 1.227E-08 1.390E-09 5.281E-03 1.078E-02 1.266E-03 6.343E-03 

7 11961 1.691E-08 1.825E-09 4.432E-03 6.738E-03 8.315E-04 4.334E-03 

Adapting on Flow and Sensitivity Quantities 

Cycle Nodes r(u) P VT T(Su) Sp VsT 

0 1105 2.897E-09 6.199E-10 1.423E-01 5.432E-02 7.920E-03 5.665E-02 

1 2315 6.624E-09 8.614E-10 6.132E-02 1.574E-02 1.612E-03 1.309E-02 

2 5026 1.102E-08 1.272E-09 2.775E-02 5.384E-03 6.200E-04 5.548E-03 

3 11321 1.709E-08 1.927E-09 1.655E-02 1.998E-03 2.321E-04 2.423E-03 
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Table 4.16: Optimization Iteration History for J 

Iteration    a jN (Uf Nodes 

0    0.0000000 0.255931086 -0.0804729674 1105 

0.254790356 -0.0945435238 2315 

0.254388631 -0.0954557818 5026 

0.254263625 -0.0956619185 11321 

1    -0.1430605 0.260084443 -0.0015143637 1157 

0.258715346 -0.0015915621 2451 

0.258307956 -0.0018519338 5296 

0.258189818 -0.0019365850 12518 

2    -0.1793729 0.260349693 0.0113225917 1197 

0.258938717 -0.0002685903 2481 

0.258532311 -0.0036352185 5498 

0.258416015 -0.0045778374 12902 

3    -0.1906139 0.260388891 0.0127604991 1205 

0.258958392 0.0024282222 2565 

0.258546684 0.0005718905 5484 

0.258431073 -0.0002657475 13056 

4    -0.1913066 0.260385697 0.0130685564 1205 

0.258953119 0.0045400995 2545 

0.258542547 0.0010437568 5653 

0.258426702 0.0000278092 13352 

was used to obtain about four significant digits in the objective function evaluation. The gradient 
was computed accurately to about 0.0001. We see that we run into the limits of our accuracy at 
the third iteration. The objective function does not change in the fourth significant digit and the 
gradient which is computed is about the same order as our error tolerance. 

We plot the temperature and pressure contours for the third iteration in Figure 4.57. Note that 
although we have increased our design objective function, we did so by affecting the "pressure con- 
straint" rather than by increasing the heat transferred off of the "obstruction." In fact Q decreased 
from 0.203 to 0.192, but P decreased further from 0.800 to 0.744. This motivated us to consider a 
different design objective. 

Second Design Objective 

In this section, we consider the maximization of Ji{a) using the values c\ = 15 and c-i = 1. Applying 
the sensitivity equation method to this case produced the iteration history given in Table 4.17. Note 
that as above, there are about four significant digits in the objective function calculation, while the 
gradient is accurate to about 0.01. Thus, while the third to the seventh iterations produce little 
change in the objective function, the optimization algorithm proceeds until failure after the sixth 
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Figure 4.57: Temperature and Pressure at Optimal Shape 
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Figure 4.58: Temperature and Pressure at Optimal Shape 

iteration, where the inaccuracy in the gradient produces an invalid search direction. 
The plots of temperature and pressure at the sixth iteration are given in Figure 4.58. Note that 

in this case we get a real obstruction which does increase the heat that is being convected off of it 
(from Q = 0.203 to Q = 0.228). This however comes at a cost in P (from 0.800 to 1.044). Obviously 
a family of shapes is determined by changing the ratio of c\ to ci- 
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Table 4.17: Optimization Iteration History for J\ 

Iteration a JC (£*)* Nodes 

0 0.0000000 2.271173030 1.3064437434 1105 

2.257484269 1.1235263540 2315 

2.252663573 1.1081328015 5026 

2.251163495 1.1041584585 11321 

1 0.1182964 2.332193132 0.8366165676 1105 

2.318839773 0.8678131107 2443 

2.313896697 0.9097510136 5394 

2.312315720 0.9306183575 12717 

2 0.2365927 2.375239985 0.3257817000 1113 

2.363818277 0.3428584385 2384 

2.359223826 0.4864326970 5351 

2.357770739 0.5206597715 12881 

3 0.3021628 2.387989142 -0.4680732831 1089 

2.375589441 -0.1528290993 2163 

2.370743613 0.0193999924 5124 

2.369002747 0.0819619660 12435 
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Chapter 7 

Interactions and Transitions 

One of the major components of CODAC is the active corporation with Air Force laboratories, 
facilities and industry. During the past ten years most of the Center's core participants have de- 
veloped strong scientific associations with engineers and scientists at various Air Force facilities 
and industries. These interactions have been mutually beneficial and we feel that such collabora- 
tions between Air Force scientists, industry and academic researchers is the most direct mechanism 
for transitioning basic research. We briefly summarize some of the current joint efforts in labora- 
tory/industry/academic interactions. 

7.1    Participation and Presentations at Meetings 
John Burns 

1. Computational Issues in Optimal Design, Center for Research on Computation and its Appli- 
cations, Montreal, Quebec, September, 1994. 

2. A Practical Approach to Feedback Control of Distributed Parameter Systems, Oregon State 
University, Corvallis, OR, October, 1994. 

3. A Report on New Results in Control and Design, Air Force Conference on Dynamics and 
Control, Dayton, OH, June, 1994. 

4. Control of Fluid Flows, National SIAM Meeting, San Diego, CA, July, 1994. 

5. Computational Methods for Optimal Sensor Location, Fourth International Conference on 
Computation and Control, Bozeman, MT, August, 1994. 

6. Sensor Location Problems for Hyperbolic Systems, IEEE Conference on Decision and Control, 
Orlando, FL, December, 1994. 

7. Physics Based Models as a Framework for Optimal Design and Control, IMA Workshop on 
Control of Materials Processing, Minneapolis, MN, January, 1995. 

8. A Control Theory Approach to Shape Optimization, ICASE/LaRC Multidisciplinary Design 
Optimization Workshop, Hampton, VA, March, 1995. 

9. A New Approach to Control Design for Fluid Flows, SPIES Conference on Sensing and Control 
of Aerosystems, Orlando, FL, April, 1995. 

10. Low Order Observers for Nonlinear PDE Systems, SIAM Conference on Control, St.  Louis, 
MO, April, 1995. 
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11. Reduced Basis Approach for Optimal Feedback Control, Conference on Dynamics and Control, 
Minneapolis, MN, June, 1995. 

12. Sensitivity Equations for Optimal Design and Control, IMA Workshop in Optimal Design, 
Minneapolis, MN, July, 1995. 

13. Optimization Problems in the Design of Local Feedback Controllers, SIAM National Meeting, 
Charlotte, NC, October, 1995. 

14. Texas Tech University, Lubbock, TX, November, 1995. 

15. The Sensitivity Equation Method: A Short Course, Southeastern SIAM Conference, Clemson, 
SC, March, 1996. 

16. Applied Mathematics in the Defense of the Nation, Basic Research in the National Defense, 
Washington, DC, May, 1996. 

17. Optimal Control Approaches to MDO, SIAM Conference on Optimization, Victoria, BC, May, 
1996. 

18. Computational Approaches to the Problem of Controller Reduction for DPS, MNTS 1996 Con- 
ference on Control, St. Louis, MO, June, 1996. 

19. Numerical Methods for Gradient Computations via Sensitivity Equations, Second World Congress 
on Nonlinear Analysis, Athens, Greece, July, 1996. 

20. Accurate Numerical Methods for Sensitivity Equations in Optimal Design, International Con- 
ference on Distributed Parameter Control, Vorau, Austria, July, 1996. 

21. A Note on the Mathematical Modeling of Internal Damping, Fifth International Conference on 
Computation and Control, Bozeman, MT, August, 1996. 

22. Models of Elastic Structures, Universität Trier, Trier, Germany, September, 1996. 

23. Optimal Design for Flows, Nestle Research and Development Headquarters, Stuttgart, Ger- 
many, September, 1996. 

24. The Sensitivity Equation Method in Industrial Applications, Deutche Mathematiker-Vereinigung 
Annual Meeting, Jena, Germany, September, 1996. 

25. A Short Course on Optimal Design, Lousianna State University, Batton Rouge, LA, October, 
1996. 

26. Set Valued Integration, St. Mary's College, St. Mary's, MD, October, 1996. 

27. Control of Fluid/Structure Interaction, University of Arkansas, Fayetteville, AK, November, 
1996. 

28. Semigroups Generated by Second Order Hyperbolic Systems, Showme Lectures, Rolla, MO, 
November, 1996. 

29. Projection Schemes for Optimal Design and Analysis, IFIP Conference on Optimization, Gainsville, 
FL, February, 1997. 

Gene Cliff 

1. Aircraft Time-Optimal Heading Reversal Maneuvers, AIAA Guidance, Navigation and Control 
Conf., Scottsdale, AZ, August, 1994. 
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2. Heirarchal Modeling Approach in Aircraft Trajectory Optimization, 13th IFAC Symposium on 
Automatic Control in Aerospace, September 12-16, 1994. 

3. Optimization in Flight Performance and Beyond, Control and System Science Seminar, Uni- 
versity of Minnesota, April 28, 1995. 

4. Optimization - Some Aerospace Applications, Honeywell Research Center, June 6, 1995. 

5. Optimal Aerodynamic Design for Flows with Shocks, Meeting on Optimal Control and Vari- 
ational Methods, Mathematisches Forschungsinstitut, Oberwolfach, Germany, 21-27 January, 
1996. 

6. Energy-Modeled Flight in a Wind Field, First International Meeting on Nonlinear Problems in 
Aviation and Aerospace, Daytona Beach, FL, May 1996. 

7. Optimization of an Airfoil's Performance Through Moving Boundary Control, 14th AIAA 
Applied Aerodynamics Conf., New Orleans, LA, June 1996. 

8. Some Aerospace Uses of Optimization, Mathematics Department Colloquium, Lousianna State 
University, Baton Rouge, LA, June 1996. 

9. On An Optimality System for 1-D Euler Flows, Second World Congress on Nonlinear Analysis, 
Athens, Greece, July 1996. 

10. Energy-Modeled Flight in a Wind Field, Workshop on Trajectory Optimization, AIAA Atmo- 
spheric Flight Mechanics Conference, San Diego, CA, July 1996. 

Max Gunzburger 

1. Control of the Time-Dependent Navier-Stokes Equations, Canadian Applied Mathematics So- 
ciety Annual Meeting, Montreal June, 1994. 

2. Feedback Control of Karman Vortex Shedding, IMACS World Congress, Atlanta July, 1994. 

3. Modeling and Analysis of Type-II Superconductivity, Westinghouse Research Laboratories Febru- 
ary, 1995. 

4. Flow Control and Optimization, Iowa State University March, 1995. 

5. Analysis and Computations for Flow Control and Optimization, Centre de Recherche en Calcul 
Applique, Montreal April, 1995. 

6. Modeling and Analysis of Type-II Superconductivity, USAF Rome Laboratory, Hanscom AFB 
April, 1995. 

7. Finite Dimensional Approximation of Optimal Control Problems, Third SIAM Conference on 
Control and its Applications, St. Louis April, 1995. 

8. Shape Control Problems for the Navier-Stokes Equations, Third SIAM Conference on Control 
and its Applications, St. Louis April, 1995. 

Matthias Heinkenschloss 

1. Optimization Methods for Constrained Control Problems. SIAM Conference on Control and 
its Applications. April, 1995, St. Louis 

2. Optimization Methods for Large Scale Constrained Control Problems. SCICade 95 - Interna- 
tional Conference on Scientific Computing and Differential Equations. March, 1995, Stanford 
University. 
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3. Optimization in Function Spaces. Department of Mathematics, Virginia Polytechnic Institute 
and State University, Blacksburg, VA, September, 1994 

4. SQP Methods for Constrained Control Problems.  15th International Symposium on Mathe- 
matical Programming. August 15-19, 1994, University of Michigan, Ann Arbor, Michigan. 

5. Projected Sequential Quadratic Programming Methods.   Seventh German-French Conference 
on Optimization, June, 1994, Dijon, France. 

6. Projizierte SQP-Verfahren für Optimierungsprobleme mit Ungleichungen. Technical University 
of Dresden, Germany, June 1994 

7. Reduzierte SQP-Verfahren für Steuerungsprobleme mit Ungleichungen.   University of Trier, 
Germany, June 1994 

8. Trust-Region Innere-Punkt Verfahren zur Lösung von großdimensionalen Steuerungsproble- 
men, Colloquium Talk, Technische Universität Chemnitz, Germany, June, 1995. 

9. Die Numerische Lösung Nichtlinearer Kontrollprobleme bei Partiellen Differentialgleichungen, 
Colloquium Talk, Universität Trier, Germany, June, 1995. 

10. Die Numerische Lösung Nichtlinearer Kontrollprobleme bei Partiellen Differentialgleichungen, 
Colloquium Talk, IWR Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (Interdisci- 
plinary Center for Scientific Computing), Universität Heidelberg, Germany June, 1995. 

11. Preconditioned for KKT Systems Arising in Optimal Control, International Conference on 
Control and Estimation of Distributed Parameter Systems, Vorau, Austria, July, 1996. 

12. SIAM Conference on Optimization, Victoria, Canada, May 20-22, 1996. 

13. SQP Methods for the Control of Fluids, SIAM Annual Meeting, Charlotte, NC, October, 1995. 

14. The Design of SQP Algorithms for the Solution of Optimal Control Problems, Workshop on 
Iterative Methods for Large Scale Nonlinear Problems, Utah State University, September, 
1995. 

15. Trust-Region Interior-Point SQP Methods for Optimal Control and Parameter Identification 
Problems, IMA Workshop on Large Scale Optimization IMA, University of Minnesota, July, 
1995. 

16. Optimal Design for Flows with Discontinuities, ICIAM 95, Hamburg, Germany, July, 1995. 

17. Optimization Methods for Constrained Control Problems, SIAM Conference on Control and its 
Applications, St. Louis, MO, April, 1995. 

18. Optimization Methods for Large Scale Constrained Control Problems, SCICade 95 - Interna- 
tional Conference on Scientific Computing and Differential Equations, Stanford University, 
March, 1995. 

19. SQP Interior-Point Methods for Optimal Control Problems, Numerical Analysis Conference - 
M. J. D. Powell Fest, University of Cambridge, England, July, 1996. 

20. SQP Methods for the Control of Fluids, 8th French-German Conference on Optimization, 
University of Trier, Germany, July, 1996. 

Terry Herdman 

1. Organized special Fluid-Structure Interactions, Pan American Congress on Applied Mechanics, 
Buenos Aires, Argnetina, January, 1995. 
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2. On an Application of the Boundary Element Method to Study Flow Induced Vibrations, Fluid 
Structure Interaction Session, Pan American Congress on Applied Mechanics, Buenos Aires, 
Argentina, January, 1995. 

3. A Comparison of MinMax and LQR Control for a Hybrid Nonlinear Continuous System, Con- 
trol Session, Pan American Congress on Applied Mechanics, Buenos Aires, Argnetina, January, 
1995. 

4. Parameter Identification in Classes of Hereditary Systems of Neutral Type, Conference on 
Differential Equations and Computational Simulations, Mississippi State, April 1995. 

5. SI AM Control and Its Applications, St. Louis, MO, April, 1995. 

6. Parameter Identification for Neutral Equations, Second International Conference on Dynamical 
Systems and Applications, Atlanta, GA, May, 1995. 

7. Identification of Parameters in Hereditary Systems, The 3rd IEEE Mediterranean Symposium 
on New Directions in Control and Automation, Special Session on Infinite Dimensional Sys- 
tems, Limassol, Cyprus, July, 1995. 

8. Identification of Parameters in Hereditary Systems, ASME Conference on Mechanical Vibra- 
tions and Noise, Special Session on Parameter Identification, September, 1995. 

9. An Optimization Based Approach to Flow Matching for Burger's Equation with Forcing Term, 
ASME Conference on Mechanical Vibrations and Noise, Special Session on Parameter Identi- 
fication, September, 1995. 

10. Applications of Neutral Functional Differential Equations, International Conference on Math- 
ematics Applied to Industry and Medicine, Buenos Aires, Argentina, November, 1995. 

11. Singular Neutral Integral Equations Institut fur Praktische Mathematik, University of Karl- 
sruhe, Colloquium Lecture, Karlsruhe, Germany, July, 1995. 

12. A Quasi-linearization Approach to Parameter Identification in a Hybrid System, The Second 
World Congress of Nonlinear Analysts, Athens, Greece, July, 1996. 

13. Solution Representations and High Order Schemes for Singular Neutral Equations, Volterra 
Centennial International Conference on the Numerical Solutions of Volterra and Delay Equa- 
tions. 

Robert Miller 

1. Optimization of Sensor Locations for Elastic Structures, SIAM National Meeting, Kansas City, 
MO, July, 1996 

Belinda King 

1. Robust Feedback Control of Parabolic Systems, National SIAM Meeting, San Diego, CA, July, 
1994. 

2. Representation Theorems for Feedback Operators, Fourth International Conference on Compu- 
tation and Control, Bozeman, MT, August, 1994. 

3. Low Order Controllers for Continuous Systems, IEEE Conference on Decision and Control, 
Orlando, FL, December, 1994. 

4. Feedback Control of Nonlinear Systems, SIAM Conference on Control, St. Louis, MO, April, 
1995. 
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5. Reduced Basis Approach for Feedback Control of Hyperbolic Systems, SIAM National Meeting, 
Charlotte, NC, October 1995 

6. Nonlinear Dynamic Compensator Design for Flow in A Driven Cavity, IEEE Conference on 
Decision and Control, New Orleans, LA, December 1996 

John Burkardt 

1. Discretization of Cost and Sensitivities in Shape Optimization, Fourth International Conference 
on Computation and Control, Bozeman, MT, August, 1994. 

Jeff Borggaard 

1. A Sensitivity Equation Approach for the Optimal Design of Nozzles, AIAA 5th Symposium on 
Multicisciplinary Analysis and Optimization, Panama City, FL, September, 1994. 

2. The Sensitivity Equation Method for Optimal Design, Oregon State University, Mathematics 
Department Colloquium, Corvallis, OR, February, 1995. 

3. The Sensitivity Equation Method for Optimal Design, SIAM Annual Meeting, Charlotte, NC, 
October, 1995. 

4. Optimal Design Using the Boundary Element Method, AMS Fall Southern Sectional Meeting, 
Greensboro, NC, November, 1995. 

5. On Active Control of Flow Induced Vibrations, 34th IEEE Conference on Decision and Control, 
New Orleans, LA, December, 1995. 

6. A PDE Sensitivity Equation Approach to Optimal Design, Mathematics Department Collo- 
quium, Virginia Tech, Blacksburg, VA, May, 1996. 

7. On Optimal Design Using an Adaptive Finite Element Method, First International Conference 
on Nonlinear Problems in Aviation and Aerospace, Daytona, FL, May, 1996. 

8. Computing Design Sensitivities Using an Adaptive Finite Element Method, 27th AIAA Com- 
putational Fluid Dynamics Conference, New Orleans, LA, June, 1996. 

9. Optimal Design Using Adaptive Finite Elements, Industrial Materials Institute, Montreal, 
Canada, February, 1997. 

Yuh-Roung Ou 

1. On the Robustness of the Navier-Stokes Global Attractors, The 14th IMACS World Congress, 
Atlanta, GA, July 1994. 

2. Feedback Control of the Driven Cavity Problem using LQR Designs, the 33rd IEEE Conference 
on Decision and Control, Orlando, FL December 14-16, 1994. 

3. Workshop of Dynamics and Control of Turbulence and Combustion: Basic Research and Indus- 
trial Applications, sponsored by Rocketdyne Division/Rockwell International, Canoga Park, 
CA, April 5, 1995. 

4. High-Performance Computing Experience at NASA and Virginia Tech., Technical Lecture at 
the Naval Command, Control and Ocean Surveillance Center, San Diego, CA, April 7, 1995. 

Justin Appel 

1. Optimization-Based Design in High Speed Flows, 1995 ASME International Mechanical Engi- 
neering Congress and Exposition, San Francisco, CA, November, 1996. 

204 



2. Sensitivity Calculation in Flows with Discontinuities, 14th AIAA Applied Aerodynamics Con- 
ference, New Orleans, LA, June, 1996. 

3. Calculating Nearby Flows using Sensitivities, SIAM 1996 Annual Meeting, Kansas City, MO, 
July, 1996. 

Lena Sadtchikova 

1.  Computational Issues in Optimization-Based Design, 34th IEEE Conference on Decision and 
Control, New Orleans, December 1995. 

Ajit Shenoy 

1. An Optimal Control Formulation of a Flow Matching Problem, AIAA 5th Symposium on 
Multicisciplinary Analysis and Optimization, Panama City, FL, September, 1994. 

2. Thermal-Fluid Control via Finite-Dimensional Approximation, 31st AIAA Thermophysics 
Conference, New Orleans, June 1996. 

3. On the Optimality System for a 1-D Euler Flow Problem, 6th AIAA/NASA/USAF Multidis- 
ciplinary Analysis & Optimization Symposium, Bellevue, September 1996. 

Diana Rubio 

1. Regularity of Feedback Operators for Boundary Control of Thermal Processes, First Interna- 
tional Conference on Nonlinear Problems in Aviation and Aerospace, Daytona, FL, May, 1996. 

7.2    Air Force Interactions 

Arnold Engineering Development Center 
This interaction was a continuation of the work on the design and improvement of wind tunnel 

testing facilities and procedures. The technical work has been described as part of the broader 
applications being pursued under industrial liason with Sverdrup. CODAC began working with 
AEDC in the development of a sensitivity module for the PARC code used in optimal forebody 
design problems. This effort was extended to other groups and CFD codes at AEDC. In particular, 
we obtained XAIR from Sverdrup and we have been working to include sensitivity modules in this 
CFD code. XAIR is the primary CFD tool used by the Sverdrup group at AEDC. In addition, we 
are continuing our work with AEDC in the development of an unstructured grid CFD code for 3D 
problems. 

As a side benefit to the CODAC - AEDC effort, Dr. Steve Keeling (Sverdrup) has started several 
joint projects with our partners at North Carolina State (Banks and Fitzpatrick). This interaction 
Came about through an initial meeting in Blacksburg. During this meeting Burns, Fitzpatrick and 
Keeling focused on the use of surrogates as one approach to optimal design. This discussion also 
included the application of convexity based methods used by Keeling. Keeling and Fitzpatrick have 
used these ideas in several design projects at AEDC. The result of this effort is that VA Tech will 
focus on sensitivity and adjoint methods while Fitzpartick and Keeling concentrate on surrogates 
and convexity approaches. This plan addresses the need to develop methods for the quick-and-dirty 
designs as well as more complex methods needed if one is to make radical steps in optimization of 
these systems. CODAC, North Carolina State and Sverdrup continue to interact on these problems. 

Phillips Laboratory 
During the past four years, CODAC personnel have worked jointly on several efforts with re- 

searchers at the Space Experiments Directorate of Phillips Laboratory (PL/SX). One aspect was an 
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independent validation and verification (IVV) effort in support of the Miniature Sensor Technology 
Integration Program (MSTI). While it is not funded under the URI program, it does involve per- 
sonnel from CODAC, as well as Dr. Jason L. Speyer - a participating researcher in the AFOSR's 
URI effort at UCLA. 

The MSTI program is a technology demonstration effort that highlights the use of small, rel- 
atively inexpensive space-assets for tracking theater ballistic missiles. While MSTI will employ 
various infrared passive detectors, the essential feature is that the sensor is capable of only angular 
measurements of the relative target position (no direct range measurement). The challenge is to cre- 
ate a filter algorithm/structure that can develop accurate reliable estimates of the target's position 
and velocity based on angles-only measurements. 

For the MSTI-2 satellite, which was launched on 8 May 1994, this problem is exacerbated by 
the fact that sensor limitations will permit tracking only during the boost-phase of the flight. That 
is, tracking of the cold - nonthrusting - missile is not possible. Our work has included the imple- 
mentation of advanced filter structures based on a global linearization of the state-to-measurement 
map and on a disturbance attenuation formulation. Theoretical aspects of this were developed by 
Professor Speyer under earlier AFOSR support. Beyond this we have also developed a Matlab-based 
software suite and implemented several new models for the target motion. We expect to test our 
algorithms with data from upcoming flight experiments. 

A second project, related to PL/SX's larger ballistic missile defense mission, was a sensitivity 
analysis to characterize the accuracy of a new approach to target tracking. The idea is to make 
better use of early launch detection measurements and so to improve track-estimation. This can 
permit early launch of ground-based interceptors. 

Phillips Laboratory 
This is a joint research effort that is based on work in optimal design and control of distributed 

parameter systems currently in progress at CODAC. The Structures and Controls Division of 
Phillips Laboratory is responsible for the design and fabrication of an Advanced Controls Technology 
Experiment (ACTEX). A problem of controlling the payload fairing noise during launch has been 
identified by Phillips Laboratory as an important issue in launch vehicles, scientists at Phillips 
Laboratory. We are investigating the use of distributed parameter control and various active control 
actuators as possible solutions to this problem. Mr. Christopher Niezrecki (an ASSERT student) 
from Virginia Tech spent the summer at Phillips Laboratory working on this project. The work 
at CODACwill focus on the use of distributed-parameter control theory to optimally design and 
locate sensors and actuators and on design of embedded actuators and sensors. 

Wright Aeronautical Laboratories 
CODAC personnel have provided support to Dr. Banda's group at the Flight Dynamics Labo- 

ratory in two areas. In February, Drs. Burns and Cliff were invited by Dr. Banda to participate in 
technical interactions at Cal Tech. The purpose of these meetings was to better understand issues 
of low-speed, compressor-control research; the group at Wright Labs will be pursuing control studies 
for high-speed compressors. In 1996, Dr. Cliff participated in an invited workshop at WPAFB on 
guidance and control issues for uninhabited autonomous flight vehicles. 

7.3    Transitions and Industrial Interactions 

Aerosoft, Inc. 
AeroSoft develops and licenses user-friendly software for CFD applications. In addition, the 

company provides consulting, applications-oriented analysis and customer training to a range of 
government and industrial clients. The General Aerodynamics Simulation Program (GASP) is a 
principal product. By user-option, GASP incorporates models with a variety of flow-physics, in- 
cluding finite-rate chemical reactions and turbulence models. CODAC has a continuing relationship 
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with AeroSoft, focusing on the development of a software product for determining flow-field sensi- 
tivity by post-processing CFD solutions. The underlying formulation relies on the SEM approach 
to accept flow-solution and grid information which defines a linear boundary value problem (the 
Sensitivity Equation) for the sensitivity. AeroSoft is part of the new PRET center. 

Analytical Mechanics Associates 
AMA develops software and supplies technical consulting services for the aerospace industry. 

CODAC worked under sub-contract with AMA to improve stability and efficiency of algorithms for 
the numerical solution of aerospace trajectory optimization problems. The research centers around 
alternative techniques for approximating infinite-dimensional control problems. Current methods are 
based on a standard differential-equation formulation of the dynamics and introduce approximations 
for the control variables and (possibly) for the state variables. We are investigating a formulation 
based on differential-inclusions, wherein it is only necessary to approximate the state variables. 
Evidence indicates that such formulations exhibit a wider domain of convergence and that they can 
faithfully capture certain 'singular-control' aspects that commonly appear in aerospace trajectory- 
shaping. 

Aurora Flight Sciences Inc 
Aurora builds remotely piloted vehicles for atmospheric research applications. One current effort 

is directed toward a vehicle that will fly over the South Pole from a bases in New Zealand. We 
assisted in the development of software for near real-time trajectory optimization. The main issue 
is that the flight speed of the vehicle is about the same magnitude as the prevailing winds. In these 
cases it requires careful flight planning to permit a successful scientific mission and safe return of 
the vehicle. 

Our approach was to transcribe the infinite-dimensional optimal control problem to an approxi- 
mating finite-dimensional one. Our parameterization of the path includes the notion of way-points, 
loosely points in space at which the speed and heading of the vehicle is specified. This will inter- 
face nicely with the flight control strategy used in the guidance block. Our work focused on the 
development and validation of mathematical models for this problem, as well as on the necessary 
software. 

It should be noted that such autonomous vehicles are also of interest in gathering military 
intelligence over hostile areas. 

BEAM Engineering and Applied Research 
During the past four years scientists at CODAC and BEAM have worked on several projects 

involving optimal design and control. Two directions that make up the present thrust are in the 
development of mathematical tools for performing engineering analyses and in the construction of 
low order local observers for feedback control of fluids. BEAM is developing software for a variety 
of industrial applications, mostly in the area of fluid mechanics. However, we are also working 
on software for material processing with the goal of attacking metal forging problems. This joint 
research will make use of Sensitivity Equation procedures for design optimization. We now have a 
formal agreement with BEAM and have expanded our interactions through the new PRET center. 

Sverdrup 
The Sverdrup operations at Tullahoma, Tennessee include a responsibility for designing advanced 

ground test facilities for use by the Air Force as well as civilian aerospace companies. Additional 
responsibilities include the development of software capable of attacking complicated flow problems 
such as those present during store separation. As part of this effort, Sverdrup scientists and engineers 
are actively involved in the development of advanced CFD methodology. We are continuing our joint 
research and software development program with Sverdrup which focuses on the following problems. 

Currently, CODAC has a copy of XAIR (MicroCraft's primary CFD code) and we worked with 
Sverdrup to modify this code so that it can be used to compute sensitivity derivatives with respect 
to shape and flow parameters.  These derivatives can be used in optimization and design studies, 
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and also by aerodynamicists in studying flow properties. This effort is the first step towards the 
development of optimal design methodologies that are to be applied to the design of wind tunnel 
components. The goal is to enhanced test section flow quality. This effort complimented the effort by 
Keeling and Fitzpatrick on convexity based methods and the long term goal is to develop algorithms 
for radical advances in design. 

Tektronix Graphics, Printing and Imaging Division 
Tektronix is a major manufacturer of electronic instrumentation; its GPI Division develops and 

manufactures the Phaser family of printers. The Phaser 340 is a radical new ink-jet print engine that 
is based on off-set printing ideas. However, there remains several control and design problems that, if 
resolved, could greatly enhance speed and quality. The device is intended to produce droplets of ink 
in response to commands. The performance issues center the around the rate at which droplets are 
produced and the quality of the droplets (size, shape, velocity). The physical phenomena are largely 
fluid mechanics, including surface tension and free-surface effects in the drop formation process. The 
activation mechanism, whereby a pressure pulse is imparted to the fluid, is also of interest. 

We are continuing our joint research effort to improve the analytical design tools for this class of 
problems. We have formulated related optimization problems (e.g. to produce a drop of given mass 
and momentum in minimum time) and constructed a model to be used for feedback control design. 
Our earlier work on fluid control, including the experience with shape optimization at AEDC, has 
played a key role in the initial effort. Tektronix is providing partial support for Dr. Paul Gilmore 
to work jointly with Tektronix and CODAC. Dr. Gilmore is currently located at Tektronix in 
Wilsonville and has made considerable progress on the development of new control and optimization 
algorithms for the printhead design and control. 

Although the primary motivation for this work is to improve ink jet performance, much of 
the basic research is also applicable to fuel injection devices and many combustion problems. It is 
important to note that this same technology is applicable to the design of certain propulsion systems 
and fuel injection devices common in many Air Force systems. This project provides an example of 
dual usage where basic research on Air Force problems also has payoffs in industrial development. 

7.4    Coupling Activities 

Captain Dawn Stewart of the Air Force Academy joined CODAC in the fall of 1995 and is working 
on her Ph.D. in applied mathematics. Her research will involve the development of computational 
methods for shape optimization in metal forging. Captain Greg Agnes of Wright-Patterson Air Force 
Base (WL-FIBG) and Dino Schiulli of the AF Phillips Lab joined our Ph.D. program in Engineering 
Science and Mechanics in the fall of 1994, as part of their Air Force duties. 
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Chapter 8 

Inventions and Patents 

No patents nor trademarks were applied for during this period. 
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Chapter 9 

Honors and Awards 

• Professor John Burns was appointed the first Hatcher Endowed Professor of Mathematics. 

• Dr. John Burkardt received the Mathematics Department's Outstanding Teacher Award for 
1994-95. 
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Chapter 10 

Visitors 

The Center offers an unparalleled potential for strengthening the educational and scientific infras- 
tructure by training students and post-doctoral researchers in an interdisciplinary team approach 
to scientific and engineering research. The Center provides unique opportunities for theoretical, 
computational, and experimental research. Through the interactions with Air Force laboratories, 
industrial partners and a strong visitors program, students are exposed to real applications. The 
combined theoretical, computational, and experimental approach provides a meaningful interdisci- 
plinary research experience. The visitors program is the centerpiece for the educational and outreach 
programs. 

This component of CODAC includes a program of visits by Air Force laboratory scientists, 
industrial partners and scholars from all over the world. During the period from 1 May 1993 
through 30 April 1997, CODAC hosted more than 150 visitors from more than 13 countries. 

10.1    1993-1994 Visitors 

May, 1993 

Kirsten Morris 
Department of Applied Mathematics 
University of Waterloo 

Ralph Showalter 
Department of Mathematics 
University of Texas 

June, 1993 

Qiang Du 
Department of Mathematics 
Michigan State University 

Kazufumi Ito 
Center for Research in Scientific Computation 
North Carolina State University 
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September, 1993 

David Dew-Hughes 
Department of Engineering Science 
Oxford University 

A.J. Meir 
Department of Mathematics 
Auburn University 

October, 1993 

Elijah Polak 
Department of Electrical Engineering and Computer Science 
University of California-Berkeley 

Ekkehard Sachs 
Department of Mathematics 
University of Trier 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

November, 1993 

Jack Benek 
Calspan Corporation 
Arnold Engineering Development Center 

Mark Briski 
U.S. Air Force 
Arnold Engineering Development Center 

Ben Fitzpatrick 
Department of Mathematics 
NC State University 

Peter Hoffman 
Calspan Corporation 
Arnold Engineering Development Center 

Steve Keeling 
Calspan Corporation 
Arnold Engineering Development Center 

Zuhair Nashed 
Department of Mathematical Sciences 
University of Delaware 

212 



Elijah Polak 
Department of Electrical Engineering and Computer Science 
University of California-Berkeley 

Ekkehard Sachs 
Department of Mathematics 
University of Trier 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

Mohsen Tadi 
Department of Chemistry 
Princeton University 

December, 1993 

Gal Berkooz 
Department of Mathematics 
Cornell University 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

January, 1994 

February, 1994 

Elena Fernandez 
CAC-Comision Nacional 
de Energia Atomica 

Andrei Fursikov 
Department of Mechanics and Mathematics 
Moscow State University 

Steve Hou 
Department of Mathematics 
York University 

Manfred Laumen 
Department of Mathematics 
University of Trier 
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David Ross 
Eastman Kodak Company 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

Tom Svobodny 
Department of Mathematics 
Wright State University 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas-Dallas 

James Turner 
Department of Mathematics 
Ohio State University 

March, 1994 

Elena Fernandez 
CAC-Comision Nacional 
de Energia Atomica 

Andrei Fursikov 
Department of Mechanics and Mathematics 
Moscow State University 

Belinda King 
Department of Mathematics 
Oregon State University 

Manfred Laumen 
Department of Mathematics 
University of Trier 

Jason Speyer 
Department of Mechanical Aerospace and Nuclear Engineering 
University of California-Los Angeles 

Srdjan Stojanovic 
Department of Mathematics 
University of Cincinnati 

April, 1994 

Eyal Arian 
NASA Langley Research Center 
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Gal Berkooz 
Department of Mathematics 
Cornell University 

Dennis Brewer 
Department of Mathematical Sciences 
University of Arkansas 

Daniela Calvetti 
Department of Mathematics 
Stevens Institute of Technology 

Jonathan Chapman 
Mathematical Institute 
Oxford University 

Michel Delfour 
Cent. Rech. Math. 
Universite de Montreal, Canada 

John Dennis 
Computational and Applied Mathematics 
Rice University 

Qiang Du 
Department of Mathematics 
Michigan State University 

Richard Fabiano 
Department of Mathematics 
Texas A & M University 

Omar Ghattas 
Department of Civil Engineering 
Carnegie Mellon University 

Andreas Griewank 
Department of Mathematics 
Dresden University, Germany 

Jaroslav Haslinger 
Department of Mathematics 
Charles University 
Czech Republic 

David Hudak 
The Analytical Science Corporation 
Washington, DC 

Tim Kelley 
Department of Mathematics 
North Carolina State University 

215 



Manfred Laumen 
Department of Mathematics 
University of Trier 

Perry Newman 
NASA Langley Research Center 

Elijah Polak 
Department of Electrical Engineering and Computer Science 
University of California-Berkeley 

Jason Speyer 
Dept. of Mechanical Aerospace and Nuclear Engineering 
University of California-Los Angeles 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas-Dallas 

10.2    1994-1995 Visitors 

May, 1994 

John Ockendon 
Mathematical Institute 
Oxford University 

June, 1994 

Dieter Dinkier Institut für Statik und Dynamik 
Universität Stuttgart 

Belinda King 
Department of Mathematics 
Oregon State University 

Arik Melikyan 
Institute for Problems in Mechanics 
IPM RAS 

Helena Wisniewski 
Advanced Program Development 
Titan Corporation 
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July, 1994 

Dieter Dinkier 
Institut für Statik und Dynamik 
Universität Stuttgart 

Gyou-Bong Lee 
Department of Mathematics 
Keonyan University 

Hans Josef Pesch 
Department of Mathematics 
University of Munich 

Fredi Troltzsch 
Department of Mathematics 
Technical University of Chemnitz-Zwickau 

August, 1994 

Dieter Dinkier 
Institut für Statik und Dynamik 
Universität Stuttgart 

Qiang Du 
Department of Mathematics 
Michigan State University 

Steve Hou 
Department of Mathematics 
York University 

Zhuangyi Liu 
Department of Mathematics and Statistics 
University of Minnesota 

A.J. Meir 
Department of Mathematics 
Auburn University 

James Turner 
Department of Mathematics 
Ohio State University 

September, 1994 

Dieter Dinkier 
Institut für Statik und Dynamik 
Universität Stuttgart 
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Qiang Du 
Department of Mathematics 
Michigan State University 

Messoud Efendiev 
Department of Mathematics 
University of Berlin 

Steve Hou 
Department of Mathematics 
York University 

William Layton 
Department of Mathematics 
University of Pittsburgh 

A.J. Meir 
Department of Mathematics 
Auburn University 

Rudolf Scherer 
Institute of Practical Mathematics 
University of Karlsruhe 

Victor Shubov 
Department of Mathematics 
Texas Tech University 

Klaus Well 
Institute for Flight Mechanics and Control 
Universität Stuttgart 

October, 1994 

Dieter Dinkier 
Institut für Statik und Dynamik 
Universität Stuttgart 

John Rice 
Department of Computer Science 
Purdue University 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas - Dallas 

Luther White 
Department of Mathematics 
University of Oklahoma 
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November, 1994 

Thomas Bewley 
Department of Mathematics 
Stanford University 

Ben Fitzpatrick 
Department of Mathematics 
North Carolina State University 

Kazufumi Ito 
Department of Mathematics 
North Carolina State University 

Stephen Keeling 
CFD Department 
Micro Craft Technology 
Arnold Air Force Base 

Belinda King 
Department of Mathematics 
Oregon State University 

Carlos Neto 
Department of Electrical Engineering 
University of California - Berkeley 

December, 1994 

Vassilios Dougalis 
Department of Mathematics 
National Technical University 
Athens, Greece 

Belinda King 
Department of Mathematics 
Oregon State University 

January, 1995 

Andrei Fursikov 
Department of Mechanics and Mathematics 
Moscow State University 

Steve Hou 
Department of Mathematics and Statistics 
York University 

James Turner 
Department of Mathematics 
Ohio State University 
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February, 1995 

Qiang Du 
Department of Mathematics 
Michigan State University 

Andrei Fursikov 
Department of Mechanics and Mathematics 
Moscow State University 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas-Dallas 

March, 1995 

Ferenc Härtung 
Programs in Mathematical Sciences 
University of Texas-Dallas 

Belinda King 
Department of Mathematics 
Oregon State University 

Danny Sorensen 
Department of Computational and Applied Mathematics 
Rice University 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas-Dallas 

Luis Vicente 
Department of Computational and Applied Mathematics 
Rice University 

April, 1995 

Dennis Brewer 
Department of Mathematics 
University of Arkansas 

10.3    1995-1996 Visitors 

May, 1995 

Dominique Pelletier 
Department de genie Mecanique 
Ecole Polytechnique de Montreal 
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June, 1995 

Rossitza Karamikhova 
Bell Helicopter 
Arlington, TX 

Robert E. Miller 
Department of Mathematical Sciences 
University of Arkansas 

Sungkwon Kang 
Department of Mathematics 
Chosun University 

Sungkwon Kang 
Department of Mathematics 
Chosun University 

July, 1995 

August, 1995 

September, 1995 

Jonathan Chapman 
Mathematical Institute 
Oxford University 

Rich Fabiano 
Department of Mathematics 
University of St. Thomas 

Belinda King 
Department of Mathematics 
Oregon State University 

John Ockendon 
Mathematical Institute 
Oxford University 

Peter Görtz 
Universität Karlsruhe 
Institute für Praktische Mathematik 

October, 1995 

Martin Berggren 
FFA the Aeronautical Research Institute of Sweden 
Computational Aerodynamics 
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Chris Byrnes 
School of Engineering and Applied Sciences 
Washington University 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas at Dallas 

November, 1995 

Qiang Du 
Department of Mathematics 
Michigan State University 

Zhuangyi Liu 
Department of Mathematics 
University of Minnesota/Duluth 

Rick Newsome 
Beam Technologies 
Ithaca, NY 

Jiongmin Yong 
Department of Mathematics 
University of Tennessee 

Paul Gilmore 
Department of Mathematics 
Florida State University 

February, 1996 

Pablo Jacovkis 
Departamento de Computacion Facultdad de Ciencias Exactas y Naturales 
Universidad de Buenos Aires 

Rosita Wachenchauzer 
Departamento de Computacion 
Facultdad de Ciencias Exactus y Naturales 
Universidad de Buenos Aires 

December, 1995 

March, 1996 

Arik Melikyan 
Institute for Problems in Mechanics 
Russian Academy of Sciences 
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April, 1996 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas at Dallas 

Dennis Brewer 
Department of Mathematical Sciences 
University of Arkansas 

Hermann Brunner 
Department of Math and Statistics 
Memorial University of Newfoundland 

10.4    1996-1997 Visitors 

May, 1996 

Martin Berggren 
FFA, Computational Aerodynamics Department 
Bromma, Sweden 

Fariba Fahroo 
The Naval Postgraduate School 

September, 1996 

Mary E. Bradley 
Brown University 

Elena M. Fernandez-Berdaguer 
Comision de Energia Atomica 
Buenos Ares, Argentina 

Ruben D. Spies 
INTEC-PEMA 
Santa Fe, Argentina 

Beth E. Bradley 
Brown University 

James C. Ellenbogen 
The Mitre Corporation 
McLean, Virginia 

October, 1996 
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Richard Fabiano 
Department of Mathematical Sciences 
University of North Carolina-Greensboro 

Dominique Pelletier 
Department of Mechanical Engineering 
Ecole Polytechnique de Montreal 

Ruben D. Spies 
INTEC-PEMA 
Santa Fe, Argentina 

November, 1996 

Jacalyn Huband 
University of Charleston 

Ben Fitzpatrick 
Department of Mathematics 
North Carolina State University 

Patrick Justen 
Department of Mathematics 
Universität Trier 
Trier, Germany 

Pedro Morin 
INTEC-PEMA 
Santa Fe, Argentina 

Suely Oliveira 
Department of Computer Science 
Texas A & M 

Günther Peichl 
Department of Mathematics 
Karl-Franzens-University of Graz 
Graz, Austria 

Janos Turi 
Programs in Mathematical Sciences 
University of Texas-Dallas 

Jeanne Atwell 
Department of Mathematics 
Oregon State University 

February, 1997 

March, 1997 
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Carmen Chicon 
Department of Mathematics 
University of Missouri 

Ruth Curtain 
Department of Mathematics 
University of Groningen 
The Netherlands 

Mary Gallo 
Department of Mathematics 
Oregon State University 

Belinda King 
Department of Mathematics 
Oregon State University 

Pedro Morin 
INTEC-PEMA 
Santa Fe, Argentina 

Job Oostveen 
Department of Mathematics 
University of Groningen 
The Netherlands 

Tim Randolph 
Mathematics Department 
University of Missouri 

Ekkehard Sachs 
Department of Mathematics 
Universität Trier 

April, 1997 

H.T. Banks 
Center for Research in Scientific Computation 
North Carolina State University 

Dennis Brewer 
Department of Mathematical Sciences 
University of Arkansas 

Hermann Brunner 
Department of Mathematics and Statistics 
Memorial University of Newfoundland 

Richard Fabiano 
Department of Mathematics 
University of North Carolina-Greensboro 
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Jerome Goldstein 
Department of Mathematical Sciences 
University of Memphis 

Gisele Goldstein 
Center for Earthquake Research and Information 
University of Memphis 

David Gilliam 
Department of Mathematics 
Texas Tech University 

Belinda King 
Department of Mathematics 
Oregon State University 

Zhuangyi Liu 
Department of Mathematics 
University of Minnesota-Duluth 

Robert Miller 
Department of Mathematical Sciences 
University of Arkansas 

Dominique Pelletier 
Department of Mechanical Engineering 
Ecole Polytechnique de Montreal 

Jason Speyer 
Mechanical, Aerospace and Nuclear Engineering 
University of California-Los Angeles 

Mohsen Tadi 
Department of Mathematics, Statistics and Computer Science 
University of Illinois at Chicago 
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